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The Dynamic Analysis of Ernty and Partially Full Cylindrical Tanks

PART I. Frequencies and Modes of Free Vibrations and

Transient Reponse by Mode Analysis
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List of Symbols (1)

r, e, z Cylindrical coordinates, See Fig. (L-l)

* Z O( t, et v(ZP O, t) Longitudinal.. tangential and radial cce-
W ' 0'Zrt ponents of the shell diselacement, (V I

measured positive inward), See Fig. (1-1)

u(Z, e), V(Z, e), w(z, e) Space dependent parts of u, v, and w in a
principal mode.

a Radius of shell

-" .a 3 - 0-8 Fourier Series coefficient - See Eq. (VII 8-

A, Generalized coordinate - sloshing modes of
fluid filling in shell.

AR Cross sectional area of wind girder.

C Normalization Coefficient

n

C Expansion coefficient for velocity potential .

'd Coefficient - See Eq. (IV-52)-(IY-53).
n

C l C , C Constants - See Eq. (I-l)-(I-3).
U V1  V

* E Modulus of Elasticity

fn Integral, See Eq. (VII-15).

Gn  Coefficient - See Eq. (IV-95).

h Shell Thickness
6

I Integral, See Eq. (VII-32)
nip

I Monent of Inertia of wind girder.

J Bessel Function of first kind of order a.

h 2
k = Coefficient.

12a2

mvn anpa
* K Mass ratio, K n-- -. .: n m, mi

(1) Additional symbols in the text are defined as they occur.

;
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L Height of shell

L Height of wind girder above bottom of tank.

M, M Frequency number, See Eq, (1-22).

MO n~jGeneralized mass of shell in mode n O,
See Eq. (IV-79).

£i Total mass of empty tank = 2,aLci•

Mnm, M Frequency numbers- See Section (III).

mi  Mass per unit of area of the empty shell.

th
M nVirtual maps per unit area of the fluid in the n
mode, See Eq. (IV-5).-

n Number of circumferential vaves of a mode of
vibration.

p Pressure in fluid.

P(O, , t) Radial blast pressure on shell.

P(r, e, t) Vertical blast pressure on fluid surface
or on roof of shell

Pih Radial blast pressure, in subarea "ih". See ectica(V1I-a)
P kp Vertical blast pressure on subarea 8kp

qn(t) Generalized coordinate of shell displacements.

th 7%, Generalized forces in the n mode.

k  
Sector of shell, See Section (VII-a).

Subarea over vhich vertical blast forces on

the fluid surface of the shell are measured.

t Time

T Kinetic energy

TSee Eq. (V-39)

T Kinetic energy of fluidT f

I L j]'+ " " -+ " +' ' '.- ,' ' ' - -.- ..% --' '' ' + ' ' " " ' ' ' ' ' ' -" " " ' ' ''+ . , . -; -+- : i , -;' -, - -'' " -: '" -" + " ; -- ' '+ -' + .

6 . -I.,'--' ' " ' , r "- ..",'"+,' +' "'"""' ' VT .:+' r ." ., .' -;".-.L_ -;- .- - -"-_ +"- ' "' .m-t- + "
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U, V, W, X, Y Coefficients defining the shapes of modes
of free vibration of the shell.

V1 , V2  Potential Energy of Shell.

Vr, v0, v z  Fluid velocities in the r, 0 and z directions.

'hi Root of transcendental Eq. (IV-23).

" ni ' oi Coefficient - See Eq. (IV-62) and (IV-93).

On Coefficient - See Eq. (V-119)

S n  Conversion Coefficient - See Eq. (V-42)-(V-45).

2' Fraction denoting the height of the fluid
filling in the shell. Height of fluid =L.

Coefficient - See Eq. (IV-58).

6ee'.... Shell Strains.:. 190, Czzl Eze

n ""'3 n• Displacement of Flui, Surface.
)n ni

V "Poisson's Ratio.

L/a Ratio of height of tank to radius of tank.

p Mass density of fluid.

Pi Mass density of empty shell.

a, 0  zz' 0z0 Shell Stresses.

* -p(r, 9, z, t) Velocity potential function of fluid

"- "'See Eq. (VII-33),

* .ow mnFrequency of vibration of empty or partially
full shell.

w, denotes differentiation with respect to the particular variable used.

Dots indicate differentiation with respect to time.

".' C.



I. Modes and Fcuencies of Fcce Vibrations of Fl'-mt.T Cylindrical Tci s.

Consider the empty fuel tank of 'ig. (I-1) consisting of a thin

cylindrical shell of height L and radius ', free at the top and sirply

supported at the base. The positive directions of the displacement

components u, v and w ar shown in the figure.

An analysis of the frequencies aid itodes of such a structure has

been made in Reference (I)1 on the assumption that the shell acts as a

membrane with no bending stiffness. In addition, a procedure for obtain-

ing the frequencies of the shell including bending effects is presented

in this reference. The condition of simple support at the base of the

shell requires in general that the displacements u(zOt), v(z,e,t) and w(z,O.

t) and the moment M be zero at z = 0. If the shell is considered to bez

a membrane with no bending stiffness, only the conditions that u(z, e, t)

2
and v(z, 0, t) are zero at z = 0 can be enforced.

The transcendental equations for the frequencies of vibration and

the expressions for the mode shapes corresponding to these frequencies,

according to Reference (1), are extremely complicated and are very diffi-

cult to apply to forced vibration problems involving the response of the

(1) "Dynamic Response of Cylindrical Tanks" by F. L. DiMaggio, Armed Forces

Special Weapons Project, Contract DA-2"-004-XZ-54, AFSUP No. 1075, May, 1958.

(2) Any combination of two displacements set equal to zero could suffice

to solve the boundary value problem for the membrane shell. However, as

shown in Reference (1), the particular combinatLn used gives rise to very

small displacements w(z, e, t) at the base of the shell. The correction

to the displacement curve fur w(z, 0, t) when bending stiffness is included

in the analysis and the condition w(z, e, t) = 0 at z =0 is enforced is

shown to be very small under these conditions.
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shell to transient blast loadings. In the present section of this report,

?.. using these frequencies and shapes as a guide, approximate values for the

frequencies and modes of free vibrations of thin cylindrical shells of

constant thickness are obtained. These approximate modes are of a

relatively simple form and can easily be used in SectionVII of this Report

in which an analysis of the forced vibration of empty and partially full

tanks is presented. Since the application of these results to both steel

shells and steel shells with concrete shielding is contemplated, both

membrane and bending effects will be considered in the following analysis.

The modes of free vibrations of the shell may be characterized by

an integral number n I the number of circumferential waves in the mode.

For each configuration nI there exists an infinite number of frequen-

cies and corresponding mode shapes. In general, for n 0, we will only

require the lowest one of these frequencies and mode shapes. For the

case n a O special conditions prevail, and this case will be discussed

in Part (e ) of this section.

The displacements u, v, w of the shell in free vibrations can be

expanded into a power series in the coordinate z9 (2a)

Su(z,G , t)= + C u+ C 3 cosne ei t
u a u( .2)

e(, Ot) i + C + Cv3  3 + "innO ei mt  (1-2)

2
w(z, e, t) + cosnG e (1-3)

(2a) From the reference of Footnote (1)of this section, it is evident that

the z dependent terms of the mode shapes are well behaved functions which

can be expanded into power series about the point z 0.

a. -~, . . .. k N
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vhere the constant terms C and C are taken equal to zero due to the
U V

boundary conditions at the base of the shell. In the membrane analysis

as presented in Reference (1), the radial displacement cannot be zero

at z = 0 and the constant term C must be included in the series forW
0

w(z, 0, t). The choice of the number of terms in each series which must

be retained in an approximate analysis is governed by the simplest combina-

tion of terms required to obtain good approximations to the frequencies.,

membrane strains and membrane stresses of Reference (1). It should be

noted that the exact membrane displacements do not differ very much from

straight lines and hence, relatively few terms need be retained in

1q (1-1) - Iq. (1-3). A detailed discussion of the above considerations

appears in Section II of this Report.

Two sets of approximate displacements are considered in this section;

1) a set in which five constants are retained in 1q. (1-1) to (1-3) and

2) a set in which three constants are retained. While the latter will

give satisfactory estimates of frequencies for most applications, the

former are required to give accurate values of strains and stresses for

use in forced vibration problems. 
k -

r-)

-I-.

| .'.

"Li

----------------------------------------------------------------



(a) Approximation Using Five Constants. - Membrane and Bending Effects

Let the displacements of the shell (Fig. I-I) be given by (2b)

U( , p t) -u(z, )e i t . U + X(- - a cosn0eimt  (i-)
La

v(s, 0, t) - v(z, O)ei t  V sin n~eim (-)
a

-. ,I(z, op t) .w(-, O~ei  a ] -) (z-a6
at '['

where n w 1, 2, *... is an integral number indicating the number of

circumferential waves in the mode, w is the frequency of free vibrations

and U, V, W, X and Y are the five constants.J (20)
The Rayleigh-Ritz method will be used to determine the frequencies

and mode shapes of the free vibrations of the shell. To use this method,

the kinetic and potential energies of the shell must be determined in

terms of the parameters U, V, W, X and Y. The kinetic energy of the shell

is given by the relation

2f L

T - (2 + ;2 + V2) adOdz ('-7)

0 0

S."where m. is the mass per unit area of the shell

" . pi (1-8)

.* _.and dots indicate differentiation with respect to time.

(2b) The expressions in the brackets in Eq. (I-4) and (1-6) for u and

w are of the form (az + bz2) and (c + dz) respectively. The particular

I,=

t ,' , , ' ,.- ,.'' .'..',,' '.-' ..- ,, . - -. , ..- .~ - . .- . - .- - - - --,"," "." ","- - ,,•- - . . .. "•",-".' '-
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(2b. Cont.). .. combinations of coefficients used in these equations

were chosen so that the kinetic energy of the empty shell, Eq. (1-9),

would contain only the squares of the coefficients U, V, W, X and Y.

This leads to a considerable simplification in the frequency determin-

ant, Eq. (I-23), by making the YW and WY coefficients equal to zero and

insuring that all terms containing the frequency number M lie only on

the main diagonal.

(2c) The Rayleigh-Ritz Method is based on the condition that the varia-

tion of the difference

L T-V

vanishes for arbitrary variations of the deflection curve consistent

with the boundary conditions, i.e. the geometrical restraints, of the

problem. By chosing the displacements to be functions containing the

arbitrary coefficients U, V, W, X and Y, the quantities T and V can be

expressed in terms of these coefficients, See Eq. (i-9)-(I-14) and the

function T-Vm.may be formed. This quantity is now a function of the

variables U, V, W, X, and Y. The condition that the variation of T-V

vanishes for arbitrary variation in U, V, W, X and Y requires that

i

where C takes on successively the values U, V, W, X and Y. This leads
iw

to a system of five simultaneous homogeneous equations on U, V, W, X and

Y; for non zero solutions of this system of equations, the determinant

of the coefficients must be set equal to zero thus leading to the frequency

determinants which appear later in the paper. See, for example, "Vibration

Problems in Engineering" by S. Timoshenko, D. VanNostrand and Co., Third Edition,

Jan. 1955, Pg. 381 ff. In this reference the method is called just the Ritz

method. Also "Mathematical Mothods in Engineering" by T.Von Karman and

M. Biot, McGraw Hill, 1940, Pg. 352 ff.
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Substituting Rqo (I-4) to (1-6) into Eq. (1-7), the kinetic energy becoms

T = -~ -- L3 1 232LT" W2 3 2 y2 +2 ('-9)
,'" a

The potential energy V stored in the shell can be expressed as a

function of the displacements u(z, 0), v(z, 0) and w(z, 0)

v 1 + V2 (I-10)

where the first term V1 is the membrane strain energy

21L

E h[ 2U2 + (V° . W)2 + 2a Uz(Y W)

_-_____hlethseon_ trm___eprsetsthestai energy of bedn and1

.- ". cuplng trmsbeteen he embaneand bending strains:

""(3) Tabes fr th Frqueniesand Modes of Free Vibration of Infinitely

-. Ln hnClnria hls yM L. Baron and lo l. Bleich, Journal of

| ApliedMecanic, Vo. 2, No 2,June 1954. Transactions of the American

> Society of Mechanical Engineers.

I

I

V, a z - .- - -- -.-- . - -. '
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2 a 2 L + (wee + , ) + 2 ) (awe Ue) 224(1-),R) a3 Jof L 2

+ ~ a2 (V + VO2 2a Vw'Iz(we + V)
2 ~zz +ee

* 3 (14)
+ 2a u w dzd8 (.-2)

The subscripts indicate partial differentiation with respect to z or 8.

Substituting the expressions for u, v and v into Eq. (I-11)and Iq. (1-12),

the potential energy of the shell is given by:

22

+UX - UY2ip- VW- - VYnI :

(4) It is proper to cali attention to the fact that the expression for,"

the strain energy V2 used may not be rigorously correct in the light of

recent advaced shell theories . Htowever, the authors are satisfied tt

the effect of any corrected strain-energy expression in the range of appli-

cation of these results is insignificant.

(5) "The New Approach to Shell Theory", By I. H., Kennard, Journal of"

Applied Mechanics, Vol. 75, 1953. Transactions of the American Society C

* of Mechanical Engineers , pp 33-40O.

. , ",

2*-? +X L- 2 + U

*~ +c.-.- .,'. n*.**- - - - - - -
a. p. p. *~ * * * * , . . . . . . . . .
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and

W 2  (1- l 2 2 + 2(-V)n2] + y 1-n 2l2)]

V2 
2 Ehg2

S24( l.)) a 2 _U2_4_2_

n U + V 2[ -

+x2 "-- - j {1 ) (I)l )
+WX - -1

where I - L/a.

The Rsleigh-Ritz method for the determination of the frequencies w

and the ratio of the shapes requires that

. (T -v 2) =0 (1-15)

where CI successively takes the values U, V, W, X and Y. Eq. (.-15) leads

to the following set of five homogeneous linear equations in the five

. unknowns U, V, W, X and Y:

62 rn3-f V ,31-i~[2M (l-V)n - k(lV)n U + kV + +
2.t _ 2E

+[] x +6P] "o (1-16)

_____ ___ . _ nn(l-,)1
S n(3V-] JU+ L~M - "(1[2 2n2 - 2 V +L+k 2 lW

+ n + (1+13 X + 3nY =0 (-7

Z-J
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+ - V + k o(- )2- 2~ ~ [M2 2- -2

+ k Ij X + 0 - n

IV ~ ~ -4

1+13U V + )~ k(- n-,n1

+. X+ Y 0 (1-19)

where

12a

and

4., - (1-22)

Ih,

Nonvanishing solutions of Eq. (1-17)-(1-20) and free vibrations exist only

if the determinant of the system vanishes. This leads to the determinantal

frequency equation, shown on Page 13.

For given values of t and n, Eq. (1-23) yields five positive roots

M j defining five mutually orthogonal modes, of frequencies

mlh J l, 2, 3, 4, 5 (1-24)

-M m,.'(."--)
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The shape of the mode pertaining to a particular frequency cu can be

found by computing the ratios , , and 1 from any four of the Eq.

'" (I-16)-(I-20). In general, the lowest frequency aI only, will be required

and for simplicity in the following expressions the subscript J for eachhj

of the constants U V W X and Y will be dropped.

Once the frequency w and the ratios of the constants have been ev-

aluated for a particular value of n, the displacements of the shell may be

written in the form:

U~,) z X 3Lz-. -3 JO c o sn o (1 -2 5 )

a 4,:. n . i w

v(z, 0) C sinne (1-26)

C - (R - cosno (1-27)W~zP0) n[V + a 2a

It is convenient to define "normalized modes of vibration" by chosing the

constant C so that~n

L 21r

1 1,(2 + 2 +w)adOdz =2gatmni -M 4  (1-28)

::: m, fo fo ",

* In this case, the modes are normalized to the total mass of the empty

hell, Mi. Substituting Eq. (I-25)-(I-27) into Eq. (1-20), the normaliza-
i%"

tion coefficient C becomes
n' 

1/2

62n1.1 (1-29)

Sn

(E-' + V 2 1 3Y 2 + 39 2 2

v3

----------..-. ,.-.---------..--.- .'----...-... ., ... ';.7. _ - - -
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Uing Eq. (1-29), Eq. (I-25)-(I-27) give the normalized modes of free

vibration of the empty tank.

It is of interest to evaluate the normalized strains and the correg-

ponding normalized stresses in each mode. The strains for the plane

stress solution of the boundary value problem for the free vibrations

of thin cylindrical shells are given by

se V C nun - 1)! cosnO (1-30)

L8J II aa

atz all" Un - + -2 a)a cosnO (-1

The normalized stresses may then be obtained from the relations

0e l 2 * " te+a (I-33)

Sa E II (1-35)

[IL 9

S%
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b) Approximation U Five Constants - Membrane Effects Only

n 0

For the case of thin shells in which the ratio of the thickness to

the radius, h, is very small, the strain energy of bending V becomes

extremely small with respect to the membrane strain energy V, for modes

with a low circumferential wave number "n ' (6 such cases, excellent

approximations of frequencies, strains and stresses can be obtained if

the shell is considered to act as a membrane with no bending stiffness

and V2 is set equal to zero. The range of h/a and n for which the membrane

assumption is permissible is discussed in detail in Section III of this

report for several cases of interest.

The frequency equation and the mode shapes for the membrane shell are

obtained by setting the value of the constant k equal to zero in Eq. (1-16)-

(1-20).. The system of homogeneous equations then becomes:

[2M. 6 (l-)n U + 3n(3 - [+ X +[-6j Yu

(1-36)

'n 3(1 +- 4 [2 2n V + W + (1+13 X + Y -0

* , (' - 3 7 )

U + V + - W + X + Y =0 (1-38)

L ] U + (1+13 V + IVW +[ 1 t M - - 60 Xj+ Y 0
",-, 

( 1 -3 9 )

(6) It should be noted that for higher modes with very large values of n,

the effect of the bending strain energy V2 becomes prevalent and the frequency

in the higher modes is controlled by the inextensional effects.

As ~ ~ ~ ~ ~ ~ X A -%7-*V ~ AJ~"~A
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~ju +fjv ow +[~ x - . o (i-ho)

The determinantal frequency equation is obtained by setting the determin-

ant of the above system equal to zero, or by setting k = 0 In 1q. (1-23).

This determinant is shown on Page 18.

For given values of I and n, Eq. (1-41) yields the five positive

roota X. The shape or the mode pertaining to a particularM can be found
3 3iU VX Y

by computing the ratios V V , and from any four of the Equations (1-36)-

to (1-40). The frequency can be computed from Eq. (I-24). In generalp

only the lowest frequency a will be required.

Once the frequency w and the ratios of the constants have been ev-

aluated for a particular value of n, Eq. (I-25)-Eq. (1-35) may be used

to compute the normalized mode shapes, normalized strains and normalized

stresses in the shell.

., -. %. , -- .. . -.- - - - .- . , ,.
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c) A2rgximation I Three Constants - Membrane and Bending Effects.

Let the displacements of the shell (Fig. I-1) be given by

u(z, e, t) - u(z, G)e"'t US cos nO ei* (1-42)

e(,, 0, t) V(,, O)C"' v sin nO e"' (1-43)L a(~

w(z, 0, t) w(z, O)eiat  WE co nO •icO (I.44)

Sh Substituting Eq. (i-42)-(I-44) into Eq. (I-7), the kinetic energy of

the shell is given by

L3 [ 2 +iV L 2 +W2 (1-45)

The potential energy of the shell is again given by Eq. (I-1O)-(I-12),

J- "which upon substitution of Eq. (I-42)-(1-44) become:

+ (nV-W)2 J! + VU(nV-W) t
Ehit

LV (I-46)
-6 . + (I-V) (V2 + nYntUV)

L 2 3 U [ n ( V)
"" and

•Ehn h - __

W2 il-& w+ 2(1¢-9)ng
V 24(1-Y 2 )

.j. ] 2 + Vj

"1 1i- ) 2n 3(1-0 ] VW (1-47)
-F) ,',



= 22.,

Using Sq. (1-15), the following system of three homogeneou3 equations

in the three unknowns U, V and W is obtained:

[2)( n (l-)(l+k U + 2 k 2  W 0 (1-.8)

2& U +~jq [2(- 2 k) [n+

[~~~( ~U + 2[x. n ++[ - 2~ ]-+~9 n lj~

+ F ~"1

W 0

where k and X are defined by Eq. (1-21) end (1-22) respectively. Nonvanish-

Ing solutions of the system of Eq. (1-48)-(1-50) end free vibrations exist

only if the determinant of the system vanishes. This leads to the dater.

minantall frequency equation shownon Pg. 21.

For given valuets of t and np Sq. (IV-51) yields three positive roots

#~ , defining three mutually orthogonal modes of frequencies

2 ". () ,-) -
m0a2 (l 2

The saeof th mod pertaining to aprtiuOlar frquencyj w cnb

found by computing the ratios and fromI any two of Eq. (ib4)-(1-5o).

In general, the lowest frequency , only. will be required end for

simplicity in the following npressionsV, the subscript rewill be dropped.

I-

MI, efiing hre =uta rthgona moes o eu~nees " I

Ir

S . . S The Sof te d petinn to a~ pat-lr rqec = 5 can b* S ',

found * * S.%5
5 S by 5%ptin the ra~o and Src' -u t- of~~ -5-----I-O
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The displacements of the shell may be written in the form

t~ Z1

..- U~zA 0) . - - cosnO (1-53)W a

V(z, 0) - C sinnO (I-54)
W a

v(z, 0) - cn  cosnO. (1-55)
n a

It is convenient to define "normalized modes of vibration" by chosing

the constant Cn so that Eq. (1-28) is satisfied. In this case, the modes

are normalized to the total mass of the empty shell, Mi a 2naTm i . Sub-

-
•  stituting Eq. (I-53)-(I-55) into Eq. (1-28), the normalization coefficient

.o >. Cn becomes

C. Vf2 (1-56)• " n + 1 2 + (M)

Using this value of Cn, Eq. (I-53)-(I-55) give the normalized modes

of free vibration of the empty tank.

The results obtained from this approximation may be used where an esti-

mate of the frequency of vibration in any particular mode is required. The

work required in solving the third order determinantal frequency equation

is materially less than that required for the fifth order determinantal equa-

tion. However, the present approximation does not give sufficiently accurate

results for the strains and stresses in the shell, and the approximation

using five constants must be employed when these quantities are required.

- ... 2- . • .
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4 d) Aproximation HEI Three Conntants -Membrane Effects Only.

As in part (b) of this section, a membrane approximation may be used

to obtain the frequencies of sufficiently thin shells in the lower modes

of n. The frequency equation and the mode shapes for the membrane shell

are obtained by setting the value of the constant k equal to zero in

Eq. (1-48)-(1-51). The determinantal frequency equation is given on Page 24.

The remarks of part (c) of this section regarding the validity and

applicability of three constant approximation also hold for this case.

-J°
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: ?_. e) Mode n = 0

* ~* (7)" It is shown in Reference (1) that the exact solution of the boun&

ary value problem for the free vibrations of a thin cylindrical shell in

the mode n = 0 yields an infinite number of frequency numbers M lying

*" -' between closely spaced limits. For a steel shell () = 0.3) with t = 0.8,

. these limits are given by ft = 0.8833 and 0.91. Since the frequencies and

their corresponding sub-modes are so close together, a forced vibration

analysis for the response of the shell in the mode n = 0 would require an

expansion involving, in general, many of thpse sub-modes of frequency (D
oj

This is not practicable and in general, other methods must be employed to

approximate the response of the shell in the zero mode. This problem is

discussed in some detail in Section VI of this Report. One suitable

method is to consider the shell as a series of separate rings.

(7) Reference (i), DiMaggio, Pg 12 and 13
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II Coparison of Results for Membrane Shells

The values of the frequency number Mn, and the normalized strains ae 0 , aczz ,

af. obtained from the five constant membrane approximation of Section I,

Part b, will be compared with the results of the membrane analysis of

Reference (1). An empty steel shell in which 0.8, 9= 0.3 and h 1a 10---

will be considered. For the modes 1 < n < 9, the shell acts as a

membrane, as shown in Fig. (III-I).

Table (II-1) gives the computed values of the lowest frequency

number, Mnl, for the modes 1 < n < 6 of the steel tank under consideration-

The results of both the five constant and the three constant approximations

U are given and these results are compared with the values of M from the
.nl

" membrane theory of Reference (1). In addition, the percentage error in

the frequency, wnl' is given for the results of both approximations.

It is seen that the error in the frequency wnl varies between 1.6%

' and 6.3% for the five constant approximation, and between 4.3% and 19.1%

' ,"for the three constant approximation. It is concluded that both approxi-

mate theories give sufficiently accurate estimates of the frequencies of

vibration of the shell for use in problems concerning the response of the

shell to dynamic loading. It should be noted that the increased accuracy

*0 of the five constant approximation is obtained at the cost of the extra

labor involved in expanding a fifth order determinant rather than one of

the third order.

* For applications in which the values of the strains and stresses

-'- of the shell in each mode n are required, the five constant theory must

be used. It should be noted that although the frequencies of vibration

*%

v.

* . > -
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and the shape of the modes, u(O, z), v(G, z) and w(e, z) can be estimated

by means of the three constant theory, the strains and corresponding

stresses which involve derivatives of the displacements cannot be ob-

tained from this theory with sufficient accuracy for use in forced

vibration problems.

On the other hand, the five constant theory. givs sufficiently

accurate values of the shell strains and stresses in the range of parti-

cular interest. For future applications, the longitudinal stress a Z

at the bottom of the shell will be of particular interest in analyzing

the uplifting of the shell under dynamic loading. Also of interest will

be the direct stress coo at the top of the shell for possible use in

connection with both buckling considerations. The determination of these

stresses requires the values of the strainse6 0 and G at the top and

bottom of the tank.

Fig. (II-l)-(II-4) show the variation of the strain at 33 with the

height of the tank for the modes n - 1, 2, 4 and 6. The strains obtained

from both the five constant theory and the membrane analysis of Reference

(1) are shown. It is felt that the results of the five constant theory

are of sufficient accuracy for use in applications to forced vibration

problems.

Fig. (II-5)°(II-8) show the variation of the strain 94 with the heigbht

of the tank for the modes n a 1, 2, ii, 6. Again, it is felt that the results

of the five constant theory are of sufficient accuracy for use in applica-

tion to forced vibration problems.

Fig. (II-9)-(II-12) give the values of the shear strain ae for the

modes n 1 l9 2. 4 and 6. It is seen that the five constant approximation
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gives a poor result for this otrala. However, as this strain is not of

* * any practi cal importance in our applications, this is no deterrent to the

use of the five constant theory. A better value of a e 6 could be ob-

* tamned from a six or possibly seven constant theory, but this would lead

*1 - to higher order frequency determinants and would serve no useful purpose

in future applications.
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Table II-1

Frequency Number, Mn

Empty Steel Tank L/a - 0.8

40,3

h 1
a 1200

Five Constant Three Constant Reference (1)
Approximation Approximation

;. • n
Mnl Error in Mnl Error in Ma,

j- LZ

. 1 .4575 3.9 .461o 4.3 .4242

2 .1906 2.9 .1974 4.7 .1802

* 3 .08.59 1.5 .0934 5.8 .0834

4 .0432 1.6 .0494 8.8 .0418

5 .0241 3.4 .0290 13.3 .0226

- 6 .0147 6.3 .o184 19.1 .0130

- (2 MnlEh
* mia

4 . %

'4 -',

0

444-. Y::Q:3Y .4-4
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III Bending Effects on the Frequencies and Modes of Free Vibrations

of Thin Cylindrical Shells.

This section presents a study of the effect of bending strains on the

frequencies and modes of free vibrations of thin cylindrical shells. It

should be noted that for shells which are sufficiently thin to be considered

membrane shells, the frequencies of free vibrations are independent of the

thickness to radius ratio, h/a, and depend only on the height to radius

ratio, - L/a. For & qhell of a given material and ratio t lying in

this range, the membrane frequency would be the same regardless of the

-" tiickness of the shell. The problem therefore takes on two aspects for

* "dscussion:

1. The establishment of ranges in which shells of practical interest

0, could be considered as membranes.

A
2. The derivation of a simple procedure which would give an estimate

of the effect of bending strains on the lowest membrane frequency in any

mode n. Such a procedure would provide a simple method for establishing

the range of modes in which a given shell could be considered to be a mem-

brane. It would also provide an estimate of the effect of bending strains

on the lowest membrane frequency in any mode n, in the range in which bend-

ing effects are of importance. The advantage of obtaining such information

without the necessity of expanding the determinantial frequency equation,

, q. (1-23), for each shell with a different h/a ratio is obvious.

It should be noted however, that if values of the strains and stresses

. in the shell are also required, the determinantal equation, Eq. (I-23),

must be expanded to obt-ain the lowest root Mnl and the corresponding mode

:nL
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shapes must be computed from Eq. (I-16)-(I-20). The use of the mode

shapes resulting from membrane theory does not give an accurate deter-

mination of the strains in the shell in the range in which bending

effects are of importance.

An approximation for the determination of the frequencies and mode

shapes of thin cylindrical shells with small h ratios was given in

Section I, parts (b) and (d), by considering the shell to be a membrane

with no bending stiffness. The results of such an approximation were

noted to be valid for modes with a low circumferential wave number n.

hIn order to establish a range of validity of g and n for this approxi-

mation (i) and to study the affects of bending strains on the frequencies

of the shell, computations were made and are presented for the following

two shells of practical interest:

h 1 La) Unprotected steel tank, r20 'a 0.8, '= 0.3

b) Steel tank with concrete shielding, a 3 L 0.8, ) = 0.3

Figure (1I-1) shows a curve of the frequency number Mn (correspond-

ing to the lowest frequency J 1 1 in each mode n) plotted against the mode

number n for the unprotected steel tank. The values of M on the curve

labeled "membrane only" were derived from the membrane frequency equation,

Iq. (I-41), while those on the curve labeled "membrane plus bending" were

derived from the complete frequency equation, Eq. ("1-23). For a shell

of this relatively small thickness to radius ratio, both theories givethe

(1) This range is quite different for steel tanks and for steel tanks

with concrete shielding.

.4

i2%
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same frequencies in the range 1 < n < 9. For the modes in which

9 < n < 14, the inextensional bending strains and the extensional membrane

strains have about equal effects on the frequency. For n > 14, the

* bending strains become predominant and control the frequencies of

vibration of the shell.

' It should be noted therefore, that if these modes are to be used in

the analysis of the forced vibrations of the empty steel tank to dynamic

loading, the membrane theory can be used and bending effects may be

neglected. In such an analysis, practical considerations of the convergence

of the mode series for the response of the shell to dynamic loadings, would

certainly not require more than the number of accurate modes given by the

membrane analysis.

The situation changes radically when the steel tank is protected by

a concrete shielding. Fig. (111-2) shows the curve of M versus n forn

this case. As in Fig. (Ill-1), the "membrane only" and "membrane plus

bending" curves are computed from Eq. (1-41) and Eq. (1-23) respectively.

Since the thickness to radius ratio of the protected shell is roughly

forty times larger than that for the unprotected shell, it is to be

expected that the bending effects will become of importance at a much

lower mode n than in the case of the unprotected shell. It is seen from

Fig. (111-2) that a membrane analysis gives accurate results in the

• range 1 < n < 3. Bending effects start to become of importance at n =3

0 and for n > 41, the bending strains be-.ome predominant and control the

frequency of vibration of the shell. The forced vibration analysis of

the response for a protected steel tank to dynamic loading would therefore

• b "I
0,
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require that bending effects be included in all modes where n > 3.

A simple estimate of the effect of bending strains on the membrane

frequencies of a cylindrical shell will now be developed. This correction

to the membrane frequency will enable the computation of the frequencies

of vibration of shells in the range where bending energy is of importance,

without resorting to an expansion of the fifth order determinantal fre-

quency equation, Eq. (1-23), for each shell with a different h/a ratio.

Moreover, for a shell with a particular thickness to radius ratio h/a,

it will enable us to determine the range in which the shell may be con-

sidered to be a membrane.

To obtain this bending correction to the membrane frequencies of a

shell, consider the case of purely inextensional motions of a thin

cylindrical shell in free vibrations. The condition of inextension of

the middle surface of the thin shell requires that the strain aee =

V0 - W be equal to zero. This condition is satisfied by displacements

of the form

w(z, e) t) con cl

v(z, e, t) - _ sinne eiCIt (111-2)ra

u(z, 0, t)=- cosne e"ilt (111-3)
n

The frequency of these inextensional oscillations can be determined

by Rayleigh's Principle:

T =V (111-4)max max

2% 
L

................
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Substituting Eq. (III-1)-(III-3) into the strain energy expression for

V2 as given by Eq. (1-12) the potential energ of the shell is given by

ax 1 [____ 2  (Ij2 -V) a 2  1152avP 24(1_. 2) 2 L n(2jj+

while the maximum kinetic energy in obtained by substitution of these

equations into Eq. (1-7):2 2
Tax = 3 [ | (3 n )n- (III-6)

I

Substituting Eq. (III-5) and (111-6) into Eq. (111-4) the frequency number

M is given by the relation

2~~~~~ 22 2 (-?h2 B2(l " )2 2(1- +1-7)1

".M .- 2 [ I ..
•B +

vhere Mn, is defined by Eq. (1-24). The corresponding frequency n becomes:

2 2 2o.1n- + 1)+
- n2  F1  (11-8

Eq. (111-7) and (111-8) give the frequencies of the purely inextensional

r -motions of thin cylindrical shells.

(2) The potential energy of extensionp V1 is identically equal to zero

for these motions.

*,
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To obtain an estimate of the effect of bending strains on the low-

eat frequency factor M i n any mode n the value of 1-1 for the membrane

shell only is computed from Eq. (1-41) or Eq. (r-57). Let the quantity

be called M m. The value of the frequency factor M for purely in-

extensional motions of the shell is computed from Eq. (111-7). Noting

t hat the factors M are proportional to the square of the frequency, an

apprcximate value of the frequency factor M which includes both membranen

and bending effects is obtained from the relation:

M =M +M (III-9)n nm hi

R Te corrected frequency w is then given by the relation

[2 2 1 a (2.-0

where w and wnI are computed from Eq. (1-24) and Eq. (111-8) res-

pectively. The method used in obtaining Eq. (III-10) is sometimes known

as Southwell's method,

Tables (IIl-l) and (111-2) show the application of Eq. (111-9) to

the cases of the protected and unprotected steel tanks respectively.

Column 4 of each table gives the value of M computed from Eq. (iX-9)
n

while column 5 given the value obtained by expanding the fifth order

detcrminantal frequency equation, Eq. (1-23). It may be noted that very

good approximations to the frequency factor M can be obtained using

Eq. (111-9). In addition, the range of applicability of the membrane

theory can easily be established from such tables, thus verifying the

results shown in Fig. (III-1) and Fig. (111-2).

It should again be noted hovever, that when strains and stresses are

required in a mode in which bending effects are important, the value of

should be obtained by expanding Eq. (1-23) and the correct mode shapes should

be evaluated using Eq. (I-16)-(I-20).
4-. C 1" -h " " " . " " - - - " -. ' '."" . " . " - q ' - . " ° - . " . " " . " : . . ' - d 

' j -
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Table III-1

Effect of Bending on Membrane Frequencies

&upty Steel Tank - Concrete Shielding
Five Constant Approximation

L/a 0.8, h I

V

n n rmn IM m l
- 1q. (111-9) Eq. (1-23)I

1 .4575 0 .4575 .4575

2 •1906 .0004 .1910 .1911

3 .0859 .0075 .0934 .0934

4 .0432 .0233 .0665 .0659

- 5 .0241 .0o5o .0791 "0779

6 .0147 .1112 .1259 .1240

I:: "

a '$ *. *,A
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Table 111-2

Effect of endi on Membrane Frequencies

Empty Steel Tank - No Shielding

Five Constant ApproximationL/ 0., h 1 9 -0.3

•q. (111-9) Eq. (1-23)

i..) .02412 .00004 .02416 .0241

6 .0147 .ooo l4 .14

,0 .0036o ooo6o .0420 oo42o

12 .00222 .00123 .00345 .00350

15 .00124 .00298 .00422 o0421

20 .00061 .00934 .00995 .00990

-5

4% E I

.[-. i~
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.

IV Free Vibrations of Fluid Filled Shells-
Dc-termination of the Virtual Mass of the Fluid

Methods leading to the determination of the frequencies and modes of

free vibration of empty cylindrical fuel tanks have been presented in pre-

vious sections of this report. In this section, the analysis will be

extended to the case of partially full cylindrical fuel tanks. As in the

case of the empty tank, the modes of vibration will be characterized by

*the parameter n, the number of circumferential waves in the mode.

Consider the shell of Figure(tV-l) which is filled to a height 7L

with an incompressible inviscid fluid of density p.. The assumption of

the incompressibility and zero viscosity of the fluid implies the existence

of a velocity potential function, (r,6, z, t), such that

0+ r 2 + Z + -2 (Ivl)_ 6r r 2 ZO rz

*-i ,ZThe motion of the fluid may be derived from , since 'the velocity of the

fluid in a direction s is given by the directional derivative

i-.."Y s 8- (IV-2)

*A

The expressions for the radial, tangential and longitudinal velocities of

the fluid particles in polar coordinates are

Vr r (IV-3)
LLL-

* -(IV-4)

-. z "* "(IV-5)
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The pressure in the fluid at any point in space is given by the deriva-

tive of with respect to time,

P P Z (iv-6)

where it has been assumed that the velocities are small.

The motion of the fluid during the free vibrations of the partially

filled shell can be obtained by the solution of the boundary value problem

involving Eq. (IV-l) and the following three boundary conditions:

a) The radial velocity vr of the fluid must be equal to the radial

velocity w of the shell on the surface r - a.

go(z, et). -)(r, (Iv-7)

b) The longitudinal velocity v3 at the bottom of the shell, z - -
z 2'

must be equal to zero.

V~ 60(r, 0o z, t) 0V-)
v= - " rz . o (Iv-8)
Z z

Z YL-
• -" 2

and

c) On the free surface at z - + the pressure must be equal to

zero:
p = p O(ro 0, z, t) =o•(-)

0 p P 0 .(Iv-9)

z -7ZL

2

Eq. (IV-l), (IV-7), (IV-8), (IV-9) enable the determination of the velocity

p" )nttal and subsequently of the kinetic energy of the fluid from the

relation:

SA

% 6
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A d (IV-IO)

where the integration is taken over all surfaces of the fluid and to

the normal derivative of 0 on the particular surface over which the

integration is performed. The kinetic energy may also be obtained by a

volume integration of the square of the velocity,

f (? + d+ ) rdrdOd (IV- a)f 21j iraz
Vol.

which, upon substitution of Eq. (IV-3) - (IV-5), becomea

: . . . .. a 2 x Z L
7)2 +1 2 rdrdedz (IV-1l-b)

Tf 2 y -- 2~(
r

The determination of will take place in three steps using the

* ., ".principle of superposition. Three separate potentials, 01' 020 and 03

will be obtained such that

0 01 + 02 + 03(v-)

will satisfy the boundary value problem.

The various potential functions Ok(r, , z, t) of 1q. (IV-12) can be

expressed as a summation of their respective components in the n modes:

0 Z9, ,, t). -3)

For example. "Hydrodynamics" by H. Lamb, Dover Publications, Sixth dition,
9 pp.46, Eq.()

Jw



In the analysis that follovs, the expressions for rill be

determined and the virtual mass m in each mode will be evaluated.vn

Expressions forh , the displacement of the fluid surface vill

also be presented. It is convenient to consider the problem for the

folloving three cases: a) a 0 - Three Constant Approximation,

b) n - 0 and a) n 0 - Five Constant Approximation.

-3 - - - - -
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(a) n 0 - Three Constant A proximation

Consider the potential function

n
Smn Bf + __ CO no t) (IV-14)

which satisifes the equation 2o0" a 0. The component of velocity in

the radial direction is

-rl . + - n-i cos ne t) . 1I--1)

B• 2j 7Lj .a1

Equating the radial velocity of the shell to the radial velocity of

the fluid at r - a, Eq. (IV-7) may be used to evaluate Bn. Defining the

generalized coordinate of the nth shell mode as q%(t)p the shell displace-

ments are given by the relations

u. u(z, G)%(t) (IY.6) (a)

v. v(z., O)%(t) (b)

V w (-, )(t))

where u(sp 0), v(a, 0) and w(a, 9) are defined by Eq. (.53).(I.55). The

value of v is obtained by differentiating Eq. (IV-16-c) and shifting the

axis of s coordinates to that of Fig. (IV-l):

(2)

' i c Cos me (t) (IV-17)CU a 7L

M L Sbstituting Eq. (IV-15) and (IV-17) into (IV-7), the value of Bn is

Bn  - C , and the velocity components due to becomesn na

SvI .C [ I + (])n-1 cos no n(t) (IV-18)

(2) The minus sign in Eq. (IV-17) is required to refer the shell velocity

to a "positive velocity in the positive r direction" convention used in

Eq. (IV-2) and (IV-7).

... . ..- . . . . .
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v 1 " , + -jn n- sin noc (t) (Iv-19)

~rn"W- (. ,-,)oo

The fluid potential Oln gives a longitudinal velocity comonernt w4

which is independent of z. In order to satisfy the boundary condition

of Eq. (IV-8) a second function 02n must be added to Oln"

The velocity potential 0
2n(r, 0, z, t) is chosen so that V 02

and that in conjunction with 0 n the boundary condition of Eq. (IV-8) is

satisfied. At the same time, the radial velocity Vr2 is chosen so that

Vr "- 0 ,IV-?!.)

r' a r-a

since Vrl already satisfies the boundary condition of Sq. (IV-7).

The form of0 2 istaken as

2n cn sinh n) a(-) co nOen(t) (IV-22)

where, in order to satisfy Sq. (IV-21), the m., are the zeros of the dert-

vative o the Bessel Function of order n, s.

J (cn ) , 0 (IV-23) 1

The component of velocity in the longitudinal direction is

* z-24 1........................................
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The boundary condition of Eq. (IV-8) may nov be written as

vii ,,. .+.=,. -lA
+ z

and upon substitution of Eq. (IV-201 and (IV-24), Sq. (IV-25) becomes

I Zj

- The constant C can be evaluated uoing the orthogonality property

of Bessel Functions. Multiplying both sides of Eq. (IV-26) by the

function J(-) vhere a., i any one of the %,ni roots of J. (%ni) -O,

and integrating with respect to r, one obtains

-. l

4=C*'( I& I. cn,51 codr

4 The orthogonality relation for the Bessel functions (  is

(3) See, for exale, McLachlan, NW,, "Bessel Functions for Engineers",
Oxford Uive.-sity Press, 1934, Pg. 166s Eq. (47) and (48).

?. ....-

•~ . . * • , . . , . . . ..-.... * , . ... . .. ,. . .. , . . ,. . ,,. . ., . .. . . .,



Also used will be the relation

which is valid for ( 0.

Using Eq. (IV-28) and (IV-29), the constant Cl is evaluated from

Eq. IV-27):

c,,,- C o577  ~ n-fr2G54Z)04-

The velocity components due to the function become:

C a a r ,v,., = t.,1n 5,h( < U, (_L / a_ s o n s n (a

and

VZ2 which is given by Eq. (IV-24).

Ii "

*q

'.-,,z .. ,-, .. -,-. ,', ,.. . . ,_ i . .. . , *.*.*.*. * ., % ... , , .. . . , . ,
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The potential function obtained by adding bi + 0 2n satisfies (Eq. IV-l)

and represents a motion in which the boundary conditions of Eq. (IV-7) and

Eqo (IV-8) are satisfied. Moreover, this motion maintains a plane surface

at the top of the fluid, z - L on which the particles have zero velocity.2',,
To satisfy the condition of zero pressure on the free surface, a third

fluid potential 0 (r, 0 , z, t) is introduced. This function represents
3n

the sloshing motions of the fluid on a partially filled tank under the

conditions of zero velocity at the tank bottom and zero radial velocity

at the surface of the tank r = a. Thus, it represents a motion in which

the tank remains rigid while the fluid inside it moves. The velocity

potential 03n (r, 0, z, t) is chosen as

3n

(a))

where the values of a are again the zeros of the derivative of the

.i

Bessel Function of order ni as given by Eq, (IV-23). The coordinates

Ai(t) could be considered as the generalized coordinates of the sloshing

modes of the fluid which are to be superimposed on the motions due to

the tank displacements given by the potential functions + The

velocity components due to the function 0n are

Vr3 IAnL Co0 nO c(1 4 C 0-L -
.: ,h n4 1Z.



and

151 IL

E.(IV-34) and (IV-36) shovitatv -V.Oe nd that V'7 A au~ 0 ,

Eq.rma 53 2

The coordinates A ni(t) are as yet undetermined but may be expressed in

terms of the qn(t), the generalized coordinates of the shell motion. This

t done by utilization of the condition that the fluid surface at s a Z2

must be a free surface with zero pressure.

To find this relation, consider the general fluid motion governed

by the potential function 0 of Eq. (IV13) so that the velocity of the

fluid in any direction s iB given by

v 2 -v 1 +v 5  vs3 (IV..37)

The kinetic energy of the fluid may be determined from 1q. (IV-lO),"

vhich upon substitution of the appropriate values of 0n and its space

derivatives on the surfaces r - a and s + A becomes

S2



IN

-;4

,1!

- .

It ray be noted thpt 1 4, L 0 and that T - 0 on the

C,tbstituting the values of on and Its epace derivatives into Sq. (IV-

38), and perforn in4  the required integrations, the kinetic energy of the

fluid on the nth mode becomes:

<zZ-s- r-_____ -,-___, ,,,. o,','L} ,,
2-0_ tonh( n

d, / .1
(2 1

4-,= 1

4:.-.
p.- iz I z:1 e 4-

Ii Eq. (IV-39) can be written aa

C0

*21 D3LAj(i-Oz. -. T D: ,., <> Di A ;,' ",,. .. / ,,' = Z , .P _Z , A4+4 a



Vhere

7rp,. <rz. l, z z."

D-2

.and,

'14

Let the kinetic energy of the shell in the nth mods be given as

Tnshu 1  2 (IV-45)

and the potential energy of the shell be

(IV146), ,.ei

The equations of motion governing the generalized coordInates qn(t) and

* Ani(t) may be obtained uy the use of Lagranges equations:

+ 4(k (TV-4T)

S 

I
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• where T is the total kinetic energy of the system in the kth mode and is

given by the sum of 1q. (IV-IiO) and (IV-45); V is the potential energy of

the system and is jiven by Eq. (iV-46)j and k is the generalized force in

I. the mode k due to any external loading and to body forces much as the

force of gravity.

Noting that the pressure on the fluid surface z -2 is zero and

(14)
neglecting the effect of the gravity forces ,) the generalized force

Qk is zero for free vibrations and the Lagrange equations on the

generalized coordinates qn and A., become:L"

-* . where Eq. (IV-49) holds for each value of i.

(4) If gravity is included in the analysis, there is a contribution to

the generalized force term, , which contains terms Ani. The analysis
6QkP

of this complete system gives rise to two sets of modes, one of which is

very close to the tank modes qn which ere obtained when gravity is neg-

lected. The second set of modes are very nearly the sloshing modes of

the fluid in a rigid tank in the presence of gravity. These modes have

extremely long periods as compared to the gn modes and give practically

no contribution to the displacements and stresses in the tank* The grav-

ity sloshing modes are required for the analysis of possible fluid spill-

ing from the tank and will be considered in a later section of the report.

The modes q. obtained by neglecting gravity will thus be used to determine

the stresses and displacements in the shell.
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Solvin Eq. (IV-49) for

and substituting Eq. (IV-50) into Eq. (IV-48), we obtain the equation

on the generalized coordinate qn(t),

407+ 49 Or-. + T-)

Equation (IV-51) implies that the kinetic energy of the fluid, Eq. (IV-39)0

(IV-40) can then be written in terms of the generalized coordinate %n(t)

only:

where the value of cnis given by

=)3

C4 D

AD 3 4

Substituting the approximate constants into Eq. (IV-52) and Eq. (IV-53),
the kinetic energy of the fluid in the nih mode becomes:

Ap-iik.1 z/L 2W 4 . --/L• te a-u"o Cc"' " b" (.. tL- ,2F

Qa~h
2Z



I

-91-

thThe "virtual mass" of the fluid in the n mode, mv, is defined so

that the kinetic energy of the fluid in the nh mode is given by

t,0 0

where wn(z. e, t)., the radial displacement of the shell is given by

Eq. (IV-16c). The total kinetic energy of the partially filled shell

plus the fluid in the uth mode becomes

.. T1 2n L /*~dl

o 0

I

The virtual mass of the fluid can thus be considered to be an additional

tank mass moving only in the radial direction.

Substituting Eq. (IV-16c) into Eq. (IV-55) and equating the result

to Eq. (IV-54), the virtual mass of the lluid in the nth mode, mvn,

becomes:

o

,. :.: _,_________-, ______/L2' @',,',-,,')

* til .
z" 2 Z.° .I? / ( -4

"cg-7 :
1 •Ow
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For convenience Eq. (IV-57) may be written as

in =epna (Iv-.58)Mvn na

where an is the quantity inside the braces. Figure (IV-2) show the

variation of e with the mode n for the various fillings denoted by

7 0 0.5, 0.75, 0.9, and 1.0. The computations were made for a tank for

which L/a a 0.8 and include terms up to and including i n 3 in the smma-

tion in en"

The motion of the fluid surface at z - + 4 in each mode n, is

required for the analysis of the response of the partiall filled tank to

dynamic loading. This analysis is given in Chapter VI of this Report.

Theae motions can be obtained by an integration with respect to time of

the longitudinal velocity V z oil the fluid surface z . + 4- iL Using

Eq. (IV-37) and noting that

.z + 1 -o (Iv-59)
YL

the velocity of the fluid on the surface z - + 4 is giventhe Z Z2 n gvenbyV z3" Using

Eq. (IV-36) and Eq. (IV-50), the velocity becomes:

9*rl 7 217~ CC<4 -I2Ol

Integrating with respect to time and noting that the initial displacement

thof the fluid is zero, the fluid displacement in the n mode (Measured

positive upward),) (r, 0, t) is given by the relation

:. (r.. 0, t) i (r,8,pt) (IV-61a)"o* " -

C. .' ..'-.-' "-'-.'.'- ..- ' '--...- ' -.- A,-. ' . .€. " .-. -' ' -.-.- ' ' -. ' -.-. '..-i' .'-$ " ll .. "-
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where

"3,4

Rewriting Eq. (Iv-61b) as

CnyL u nirl
nShi(r, 0, t) - n (--) coo no qn(t) (XY-62a)

where

and considering a tank with L/a = 0.8, the values of the coefficients Ani

are given in Figures (IV-3)-(IV-8) for the modes n - 1-6 and i - 1, 2, 3.

In each case, the coefficient is given for tank fillings ranging from1

1 - 0.50 to y - 1.00. Table (IV-l) gives the corresponding values of

the roots for use in Eq. (IV-62&).

4

-.



b) n-O

Consider the potential function 01 (r, z, t)

x.! r2  . z + 712
2- 2 + ) (t) (IV-63)

which satisfies the equaton . The component of velocity in

the radial direction is

vrl. - - %(t) . (Iv-64)

For application in the forced vibration analysis of Section (VI),a z-

independent radial displacement of the shell, v 0  qo(t), will be con-

sidored where qo(t) is the generalized coordinate of the shell mode

n O. 0.

Noting that the radial velocity of the shell at r a a is given by

the boundary condition of Eq. (IV-7) is satisfied by the potential

franction 0, (r, z, t).

The velocity components in the tangential and longitudinal directions

are respectively

vO 0 (iv-66)

Vzl Z-L ((+t) •(IV-67)01
a 2 %

The 71,uid potential 01 gives a longitudinal velocity component V. n 0 at

the bottom of the tank 2 - - thus satisfying the boundary condition

(5) See footnote (2) on Page (IV-5)

. . . . . . .
[.(.... .- .- - . .- - ....-..-. : - ,.., ...- .- .. .- . , ,-.- .-. ,.-..- ,- ." • ,."-."..'-," .'.-.',-..-. -. -. ,. -" ," ," ," -" -,' .-.';.''.'',' .'... '.'.-i
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" -: of .(IV-8).
o"' To satisfy the condition of zero pressure on the free surface, a

second fluid potential 02(r, z, t) is introduced. This function rcpre-

.cuts the sloching notion of the fluid in a partially filled rigid tank.

The velocity potential 02 is chosen as

~~where the values of n are the zeros of the derivative of the Bessel

-: Functions of order zero,

,. The velocity components due to the function 02 are

00

CI

wher the ( v-7)aue (oVf e showr tha zeo of nedrivativ ofth es

," " . ofThe helit copnts dnauaeria to the fucin ae ween#O

=,02

rr2 "07
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To find this relation, consider the general fluid motion governed by

the potential function 0 - 01 + 02 so that the velocity of the fluid in

any direction s is given by Vs t v + Vs2 The kinetic energy of the
s l s2'

fluid may be determined from Eq. (IV-ll),

00 z (V- 7.3)

which upon substitution of the appropriate values of the space derivatives

of 0 becomes:

%-- -
IOJWp 7Q-7(9 Jv-77)
andO

Eq. (IV-714) may be written as 
'

4w-4

where

rP+ Yj (IV-76)

0 ~ a 3

oi

and

03  &.... 7 ~IV-78)
* 2motanh(-a-
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Let the kinetic energy of the shell in the zero mode be

T oshell " o(I-79)

and the potential energy of the shell be

Vh K1-2 (Iv-6o)'" Voshell 0

Prococdint, in a similar m.anner to the case where n 0,, the Lagrangian

equations of motion on the generalized coordinate8 qo(t) and A0 (t)

become:qL
L: + 2D + + + % o (Iv-81)

V'. i,1#

o % + 2% 3AoI 0 (1 1, 2, 3,. • • (I.Q8)

Eq. (IV-81) and (IV-82) satisfy the condition that the pressure on

the fluid surface z w n 0.
2

It may also be noted that the effect of gravity forces has again been

neglected.

L., Solving Eq. (IV-82) for A 1

D 0
A I o2(IV83)

%o3

and substituting this value into Eq. (IV-81)t the equation on the

7 generalized coordinate qo(t) becomes:

K lEquation (IV-8 4) implies that the kinetic energy of the fluid can be

written in terms of the generalized coordinate % (t) only,

. :. . .. .. . . .
• -."" " " . ." ." -. .[ , " - ' -" -"-i - ., -, .-a. . " " ,.r ." " -"&. .- " " - " - . " a- ., " . " " -" -- ' ' -.-- " . - - ' '- ; - . -, .' " " -



T - 2Tofl C. q. (t) (Iv-85) -
ofluid

where the value of is given by
0

2
co t t i E D .V 8)Od (IV-86 )

Fu ,,tituting the appropriate constants into Eq. (IV-85) and Eq. (IV-86),

the kinetic enora of the fluid in the 0 mode becomes

37--

I!

The "virtual mass" of the fluid in the zero mode, m is defined

so that the kinetic energy of the fluid is given by

,- -

and w0 is given by Eq. (IV-65). Substituting this value of w0 into

Eq. (IV-88) and equating Eq. (IV-87) and Eq. (IV-88), the virtual mass

of the fluid, mvo, becomes

40

The motion of the fluid surface at Z = + in the zero mode is
2

obtained by an integration with respect to time of the longitudinal
L

velocity Vz of the fluid surface z = + --U . This velocity is given by

the sum of Eq. (IV-67) and Eq. (IV-72). Using the relation of Eq. (IV-83),

'." -"- ." ."." ."." -" " ,>'. ' -" "-" -"." -" " ." "J ."'t' .'.''. "" -: .'" -j "" """""J"""""2 .J
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2_"the velocity becomes

7(7

Integrating with respect to time and noting that the initial displace-
~L

ment of the fluid is zero, the fluid displacement at the surface 
z = + L

- in the mode n 0 (measured positive upward)j) o(r, t), is given by the

relation

4

Writing Eq. (IV-92) as

moi

* 3oi(rp t) P oi j O (Iv-93)
I Lthe values of p are given in Fig, (IV-9) for a tank in which L 0.8

The coefficients P are given for tank fillings ranging from 7 - 0.50 to

1.00 and for i, = 1 2 and 3.

-. Using Eq. (IV-58) with n - 0 and (IV-89), the values of a for a

tank in which L/a - 0.8 are shown in Fig. (IV-2) for the fillings v - 0.5,

0.75, 0.90 and 1.00.

6 .o
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c) n , 0 Five Constant Approximation

The procedure used in tae present section for the determination of

the virtual mass and the fluid displacements is exactly analagous to

the procedure used for the three constant approximation of Section (IV-a).

Consider the potential function Oln

n
n " " ~m-Bn +cosne &(t) (IV-94)1nan 1

1 a Yn.,
n7 - 1)+ ia 7- (7v+95)

n 7

hi t equation V -O0 The component of velocity in

the radial direction is

a B, ELn + (M)n- coonG qn(t) . (IV-96)

Equating the radial velocity of the shell to the radial velocity of the

fluid at r - a, Eq. (IV-7) may be used to evaluate B.. Defining the

generalized coordinate of the nth shell mode as qn(t), the shell displace-

ments are given by Eq. (IV-16) where u(z, 0), v(%,&) and w(zG) are

defined by Eq. (1-25)-(I-27). The value of w is obtained by differentiat-

ing Eq. (1-27) and shifting the axis of z coordinates to that of Fig. (IV-l):

v -[(, n + + t cogno%(t) . (IV-97)

Substituting Eq. (IV-96) and (IV-97) into (IV-7), the value of B is
n

B -" ' (IV-98)n a

IA
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and the velocity components due to become

1,1  n * Ln + "a" cosne qn(t) (IV-99)

- c [GZYlf + sinnJ -- %it) ((f-lio)
Vo Cn n A a

':-- Vzl = -C-1cosn0 O VI
%I n

Proceding as in Section (V-a) and noting that the expression for

the longitudinal velocity V7l, Eq. (IV-lO1), is of the same form as

Eq(IV-20), the potential function 0 2n and the corresponding longitudinal

velocity vz are given by Eq. (IV-22) and (IV-24) respectively. Using

the boundary condition, Eq. (IV-25), the expressions for Cni and the

.velocities v2 and Vr2 are given by Eq. (IV-30)-(IV-32).

To satisfy the condition of zero pressure on the free surface,

the fluid potential 03n ±s.introduced. The expressions for 03n and

the corresponding velocity components, r3' v0 3 and v3 are given by

Eq. (IV-33)-(IV-36) where the coefficients An, are still to be determined.

The coordinates Ani(t) can be expressed in terml of qn(t), the generalised

coordinates of the shell motion. This is done by utilization of the

condition that the fluid surface at z - must be a free surface with

zero pressure.

To determine this relation, the kinetic energy of the fluid,

Eq. (IV-38) is evaluated:

,0 .:

U_

,°~* . . . . . - -.- - - - - - - - -

,2~
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6 X 

+a _jig

-/-, ,'// 
-

.4)

All C/

* I4 A;

Eq. (IV-102) can be written as

where

- I. , ,/,(<< & .,

and D1* and D3i are given by Eq. (IV-42) and (IV-44) respectively.

Proceding as in Section (IV-a) and using Lagranges equations, the

relation between the coordinates A and qn is given by

:* Ad.% *(vi3i

D -2"

A. "
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Using E'q. (iv-i06), the kinetic energy of the fluid may be written in

terms of the coordinate q,(t):

- --4 -- -2-

Z--h( q - /7&71 SL.)

Substituting Eq. (IV-95) for G into Eq. (IV-107), the kinetic energy of

* 'the fluid in the mode "n" is:

T T (- 8)

where the coefficients 1n n and 11 n are respectively

.2 ( + 4,, a-,) - " L. 0 ' 4C-

4 ~ ~ n -,9 6171 4E/h~~j 2~ i) 2(

Z7

4i

... .. "" "" " * *""-"-*"......................................................................."...."..-...... - "." " . .. "
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and

-r(- 2 9 r-

The motion of the fluid surface at z = + 7L in each mode n, is

- required for the analysis of the response of the partially filled tank

to dynamic loading. These motions can be obtained by an integration

with respect zo time of the longitudinal velocity v on the fluid
z3

surface z = + -. Proceeding as in Section (IV-a), the fluid dis-2
placement in the nth mode (positive upward), n(r, , t) is given by

the relation
CO

n(r. 0, t) - jnI(r. 0, t) (IV-nO)

where

II

6,~) [C4 ~ G/7__

rx- 2(4)

. . . . . . . .. . .
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As in the case of the three constant approximation, n (r, 8, t) can be

written as

-~ Y nL _ nir

1:i :: - n(r, e, t) C - ni Jn (-") cos nO %(t). (IY-II2).

- ",

0a

0" ,~

61

(&Yo 11-
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J

Table t'fol

R~ootsai for *0

0ia- n-i n-2 n 3 n-4 n 5 n-6

- I 3-832 1,8iti 3.053 4.20 5.31 6.40 7.50

Sa 2 7.o16 3.332 6.707 7.89 9.04 10.52 1.74

I - 3 10.17 8.536 9.97 U.17 12.33 13.99 15.27

I - 13.32 11.71 13.17 14.37 15.53 17.27 18.6o

1 m 36.47 14.86 16.31 17.52 18.79 20.53 21.88

-- .
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V. Modes and Frequencies of Free Vibrations of partiall4 Full

Cylindrical Tanks.

Expressions for obtaining the modes and the frequencies of free

vibrations of partially full cylindrical tanks are presented in this

section of the report. As in the case of an empty tank, two sets of

approximate displacements are considered; 1) a set in which five con-

: - stants are retained in Eq. (I-1) to (1-3) and, 2) a set in which three

constants are retained. While the latter will give satisfactory estimates

of frequencies for most applications, the former are required to give

accurate values of strains and stresses for use in forced vibration

problems.

Employing the Rayleigh-Ritz method as in Section I, the total kinetic

- energy of the partially filled shell in the nth mode is given by the

¢: [i:relation

T =T + T (v-l)n nshell nfluid

v here Tnshell is given by Eq. (I-7) and Tnfluid is given by Eq. (IV-55)

for the three constant approximatiuu or Eq. (IV-108) for the five con-

stant approximation.

The potential energy of the combined system is not effected by the

fluid in the shell (the effect of gravity forces on the potential energy

of the system has been neglected in Section (IV) and is given by Eq. (.'3 ),

(1-12).

As in the case of the empty shell, frequency determinants will be

given for the case in which both membrane and bending effects are considered,

.I
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and for the case of a membrane shell. For the mode n = 0, special condi-

1ions prevail, and this case will be discussed in part (f) of this section.

a) A mroximation Using Five Constants - Membrane and Bending Effects

n 0

Let the displacements of the shell be given by Eq. (I-4)-(I-6) which

are repeated here for convenience.

u(z, 0, t) =u(z, O)ei a  x( . 3Lz+ cosnO eit (V2)

4e1

v(z, 0, t) v(z, O)ei Vg sinnn ei  (v-3)

w(z, 0, t) . w(z, O)ei + w - cosnO e (V-4)

thThe kinetic energy of the shell mass in the n mode, Tnshell is

given by

2x L
mi r f~ (.2  2  2 a

Tnh 2 u n v n+ waz (V-5)

0 0

and the kinetic energy of the fluid, T.luid is given by Equation (IV-108)

for the five constant approximation:(l) #6.;

min2

Tfluid= n mn'n (V-6)

(1) For free vibrations, the time dependency of the displacements is taken

iWt
as ea

S~. . - - "" . "-"'' ., ''' , -.-.-.-.- "" ..- 2 '-''''..,.-.. ,-J ' -, ":".','.'. . ," . ." . .-. " . -" . -' ," .!!



subst:',uting Eq. (V-2)-(V-4) into Eq. (V-5) and adding Eq. (v-6), the

total kinetic energy of the partially filled shell in the nth mode is

obtained from Eq. (V-i):

2
U2 + m2 + 1 X2n

+ -3 ( + eI 9a y2 + Vn3 Pay (V-7)
t23 mi  Iym i

where the coefficients In x In and In are given by Eqs. (IV-109a)-

(IV-109c) respectively.

* . The potential energy V stored in the shell can be expressed as an

* function of the displacements u(z, 8), v(z, 8) and w(z, 6) by Eq. (I-10)-

(1-12), which upon substitution of Eq. (V-2)-(V-4) become the expressions

given by Eq. -13) and Eq. (1-14).

Applying the Rayleigh-Ritz method, the following set of five homo-

geneous linear equations in the five unknowns U, V, W, X and Y are obtained:

[214 6 - (1 ))n2 k(l -' U + 3n(3J - f 1 + Y l --J , _

4: 3 6'JL x + 2] Y o (v-8)

[i3 n U2 u+ [214 (1- j. 2n2 ( k9n(l W

L 2 &2 L 2 I 2  ~2

+ (l+ 13 x +[t] Y 0 (V-9)

: -'-" ." " .'.. . ,-... - "... . . -" " ... . . . . ". "-. . ".... *. ., ..- . -.- - -.• . .-.-
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" k3(1 )n 2  k9n(1- V + 3J"k,_ n U + + 2 V + - + m)j 7 2 ]

- : k(1U n 2)2  12(1 -'- w , k ) x2 [3=11 - :
ti " l + n2 mi-U

.. (v-o) .

- 1--U±+ .... X + k

t3214 3l_) t 2 2 X [3j -0 ~

(v-u)

=:: -Y6U + V + 3 paW+ 3

F6 ~ 32 (12)2~] y~L -X

(1 + Z ) .- -in 1 k nl Y .o.. +. [T2l 3 mi "

-/where k and M are defined by Eq. (1-21) and (1-22) respectively, 7 is the

fractional height of the filling | - and Tn %n' and 'n are defined

by Eq. (IV-109a)-(IV-109c).

Nonvanishing solutions of Eq. (V-8)-(V-12) and free vibrations exist

only if the determinant of the system vanishes. This leads to the

determinantal frequency equation shown on Page 96.

For given values of t, n and 7, Eq. (V-13) yields five positive roots

M, defining five mutually orthogonal modes, of frequencies
*-Ui

0 2 MjEhj.,,3 ,5

--. - 2. 3p 4)

M a-_V2

* " ' """'[ i i i ? """ [ ' ? "''''' i"""''': [,[[.-. " "' ' ' ' ' ' ' ' ' ' ' ""'": ' ' " """""""""" " : " "
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The shcpe of the mode pertaining to a particular frequency (D can be found

U V X Y
by computing the ratios q , and - from any four of the Equations

(V-8) to (V-12). As in the case of the empty tank, in general, only the

lowest frequency a), will be required and for simplicity, the subscript 3

will be dropped for each of the constants U3, V3, W3, X and Y

Once the frequency w and the ratios of the constants have been ev-

aluated for a particular value of n, the displacements of the shell become:

u(z,6) C + cos nO (V-15)

v(z,8)= Cn ) sin nO (V.6)

w(z,o) - C + cos nO (V-17)

The constant Cn is again chosen so as to normalize the mode to the

total mass of the empty shell. The normalization condition thus becomes:

;- "L 2-n

mi f f u2 + 2 2 -fluid 21aLmi - Mi  (V-18)

' where Tfluid is the space dependent part of Eq. (IV-108). Substituting

Eq. (V-15)-(V-17) into Eq. (V-18), the expression for the normalization

coefficient C is

+ i ___ Y 1mi w xj'

2 ( + 3mi ) ( ) + n 3 2 + ( ) +9

S
C n 4 .-

:2 !: W) + M* W
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Using Eq. (V-19), Eq. (V-15)-(V-17) give the normalized modes of free

vibrations of the partially filled ta~nk.

The normalized strains and stresses in the partially filled tank

may be evaluated from Eq. (1-30)-(1-35); using the ratios of the constants

and the expression for the normalization coefficient that have been

derived in the present section.

4VA



b. i'?P:'ox-atlon Ustir. Five Constt.ntn-M,.mbrane Effects Only.

As in the caze of empty shells, a membrane approximation may be

madW rn which the strain ener y of bending, V2, is set equal to zero.

Fur tWin shells in which the thickness to radius ratio, h/a, is very

Frj-.Jl, excellent approximations of frequencies, strains and stresses can

u ,btnined from such a procedure for modes with a low circumferential

wav . ntriber "n". It many be noted that the range of h/a and n for which

t., :;,:brane assumption is permissible can be estimated by methods

slr;lar to those of Section III of this Report.

The frequcncy equation and the mode shapes for the partially

Iu1l. mc,.br- me ..,,ll are obtained by setting the value of the constant

"L c,.ua to zero in Ea. (V-7)-(V-II). The system of homogeneous equations

thn becomes:

;.-
2j 2 (1 -)n UV +[] W +

+ X + Y =0 (V-20)

2t 2;ai' '•  L3n(3v - )]U + 2I4" 3k "j ' 2n V 2j

1+ +13] x + t] Y o (v-21)

["]"U + V + g{ + mi -3 W + X

4 [12' 2" [ n  2

+ La n M] Y 0 (v-22)

,L.'.. . .. ..' . .. .-.- .,'-.-. .. .-'. §. ," . . . .-. ... -.,. .- . .- , .,. - ... - .. . .'.. ,.*.. -1 ,,. .,.- ... ... .,. , -.. .-
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1 U + [Ir11+ ) v + W + M . do

+ M= 0 (V-23)

322i

in mm n)1fj Y

(v-24)

The determinantal frequency equation is obtained by setting the

determinant of the above system equal to zero, or by setting k 0 in

Eq. (V-13). For this determinant see Page 101. For given values of |,

n and y, Eq. (V-25) yields the five positive roots M . The shape of the

mode pertaining to a particular M can be found by computing the ratios

U V X Y -

and 1 from any four of the Eq. (V-20)-(V-24).

Again only the frequency corresponding to the lowest root MI, will

be of interest.

Once the frequency w and the ratios of the constants have been evalu-

ated for a particular value of n, Eq. (V-14)-(V-18) may be used to compute

the normalized mode shapes of the tank. The normalized strains and stresses

in the partially filled tank may then be evaluated from Eq. (I-30)-(I-35),

using the normalization constant C and the mode shapes of the present

section.

I°

*•

-' , • , , . . . . . -. - .*- - .* . ' " .- . '. ' .-. *.'* *a v -'. ...' ' '. ...*' ., , ,' . " ..' ' ' -- ' '. ...' ' '. .2.- .'- , ..' ' *. -
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c) A ,-,roxJ-.,ition Using Thrcc Constants - Membrane and Dcndin Effects.

n 0

Let the displacements of the shell be given by Eq. (1-42)-(1-44)

* which are repeated here for convenience:

* "" it z csOe (-6

u(z, 0, t) - u(z, 0) e = U cosnO e (V-26)
a

v(z, 0, t) - v(z, 0) eict = V sinnO e (V-27)

w(z, 0, t) . w(z, ) e - W cosnO eit (V-28)

The kinetic energy of the partially filled shell in the nth mode is

given by Eq. (IV-56) where mvn is given by Eq. (IV-57). Substituting

Eq. (V-26)-(V-28) with Eq. (V-5) the kinetic energy becomes

2

T L [U + V2 W21 +%y (V-29)
n ,a

where

K n mn s n pa (V-29a)

The potential energy V can be expressed as a function of the dis-% Vn
placements by substituting Eq. (V-26 )-(VY28)into Eq. (I-lO)-(1-12), thus

obtaining the expressions given by Eq. (1-46) and (1-47).

Applying the Rayleigh-Ritz method, the following set of three homo-

geneous linear equations in the unknowns, U, V, and W is obtained.

*~ ~ - l2l9(l(]u+V-l]1+)j~

(v-30)

L.:(3': L-Uj u + [M 2n - ( ') (1+3k] + n + ] w Io

................ **: . ' **



"J U "J U + [2a

+i kL2(+ 3) -2 6k (1_0)2 + 2(l.Y)nlIW 0
L2 3

(v.32)

where k and M are defined by Eq. (1-21) and (1-22)p and 7 is the

frttional height of the filling.

Nonvanishing solutions of Eq. (V-30)-(V-32) exist only if the

determinant of the system vanishes, thus leading to the determinantal

frequency equation shown on Page lo.'

For given values of t, n and 7, Eq. (V-33) yields the three positive

roots defining three mutually orthosonal modesof frequencies given

by Fq. (V-14). The shape of the mode pertaining to a particular frequency

u can be obtained by computing the ratios M and from any two ofJ -

Eq. (v-3o)-(v-32).

As in the case of the empty tank, the lowest frequency M, only vill

be required and the subscript J will be dropped for simplicity.

The displacements of the shell may be written in the form
Uzu(z, 6) C n W a cos. no (V-34)

V(z, 0) " Cn ! sin nO (V-35)

w(z, 0) c coS.o o (V-36)
n a

where the constant C is again chosen so as to normalize the mode to the
n

total mass of the empty shell. The normalization condition is given by
(2)

* Eq. (V-18), which upon substitution of Eq. (V-34)-(V-36) gives the follow-

ing expression for the normalization coefficient Cn:

% (2) For the three constant approximation, Tfluid is the space dependent part of

. Eq, (IV-55)•
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1/2

C 6 (V-37)

Uoin- Eq. (V-37), Eq. (V-34)-(V-36) give the normalized modes of free

vibration of the partially filled tank.

The results obtained from this vpproximation may be used where an

estit ate of the frequency of vibration of any particular mode is required.

Howc~ver, the present approximation does not give sufficiently accurate

results for the strains and stresses in the Bsell, and the approxima-

tion using five constants must be employed when these quantities are

4 required.

.4
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d) Anproxim.tion Using Three Constants - Membrane Effects Only.

As in Part (b) of this section a membrane approximation may be used

to obtain the frequencies of sufficiently thin shells in the lower

modes of n. The frequency equation and the mode shapes for the membrane

shell are obtained by setting the value of the constant k equal to zero

in Eq. (V-30)-(V-33). The determinantal frequency is given on Page 107.

The remarks of Part (c) of this section regarding the validity

and applicability of the three constant approximation also hold.

for this case.

.1-
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-) Determination of Ao roximate Frequencies of Partially Full

Cylindrical Tanks - Rayleigh's Method.

If the frequencies and mode shapes of an empty cylindrical tank are

known, an expression for the determination of approximate values of the

.* frequencies of the partially full tank, in terms of these quantities

can be derived from Rayleigh's principle. For a partially full tank,

Rayleigh's principle may be written for the nt h mode of vibration:

T + -m -v (v-38)9=x nshell, max Tnfluid, max n, max

where the subscript "max" indicates the madmum value of the respective

qaantity and the Tnshell Tnluid and Vn are given by Eq. (I-7), (IV-55)

and (I-10) respectively. Writing T in the form
W 2 man, max

n, max n max

where Tn is obtained by substituting the displacements u(z, 9), v(z, 0)

- and w(z, 0) instead of the velocities, into the equations for kinetic

energy. Substituting Eq. (V-39) into Eq. (V-38), the frequency of

*th
the n mode of vibration of the partially full shell can be written

- in the following form:

W 2 V nmax a Lshehl max

nahelp ax shelp mx e l uidma a

Substituting the mode shapes for the empty shell into the expressions

for % and Vn in Eq. (V-40), and noting that for this case, the frequency

." of the nt h mode of the empty tank, one is given by
!V

2. ."nmax- a P (V-41):, -.. ne -'V

nshell, max

................-.- - -- .-... .- -.- . - .-.. .,. ,.,. ..- ..-.- .' . . • -. '.-.-.-.-.-. - . .. .. .. p '.-.-.-.-p.
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the frequency equation, Eq. (V-40) becomes

2 2(d o a) (Y-42)
n n ne

where

Tnshell, max (V-43)

Tnshell, max + Tnfluid, max

The value of B for the five constant approximation is given by then

relation,

=1

1+-7- Y n +n pa(Y,2 + payI
2 a n (V-44)

where C and Fn , / are given by Eq. (-29) nd Eq. (V-109a)-(109c)n ?n' n nf

respectively.

The value of B for the three constant approximation is given byn

the relation

2 23 (v-45)

C K Y
1+ 2 n1 + .. -

6 -

where C and K are given by Eq. (1-56) and Eq. (V-29a) respectively.
n n

Equations (V-h2)-(V-45) may be used to obtain approximate values of

the frequency wn of the partially filled tank for modes in which n > 2.

It should be emphasized however that for the mode n - 1 and for all modes

in which the strains and stresses in the shell are required, the value of

the frequency should be computed from the determinantal frequency equations

given in Sections (V-a)-(V-d) and the correct mode shapes should be evalu-

ated from the correoponding' equations given in these sections.
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Table (V-1) shows the application of Equations (V-4il).(v-45) to

the cases of 9/10 fufll steel and concrete tanksi. The value of the

2*frequency number M which is proportional to W.is evaluated from

the relation

M=8M (V-146)nh "nne

-. where M is the frequency number for the empty shell. It is seenhe

that good approximatioB to the frequency are obtained in both cases.



f) n O

The frequency w of a partially full tank can be determined in

terms of the frequency w0 of the empty tank. Noting that the displace-

ment of the shell in the mode a - 0 is purely radial, the total effect

of the fluid filling is an increae in the mass of the shell, m.,

Considering the s-independent radial motion of the shell an

described In Section (IV-b),

. %(t) (V-47-

and using Eq,. (IV-88) and (IV-89)$ the increase in the mass of the shell

due to the fluid filling of height rL is given by 0 The frequency

of the partially full fuel tank can then be computed from the relation

2 2 L 1 (v-48)
1+ I I

where

2 2h
(.)mia 2

o,, -
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Tnble V-I

Determination of n

Unprotected Steel Tank Zi0 Ful.

-i "a~ -- y .9a 1200

n Mn 86 M M
hen n

Eq.(I-41) Eq. (V-44) Eq.(V-46) Eq. (V-25)

2 .1906 .0495 o00943 .00809

3 .0859 .0578 .00497 .00475

4 .0432 .0659 .00285 .00281

5 .0241 .0741 .00179 .00175

4 6 .x147 .o816 .00120 .00120

Protected Steel Tank 9/10 Full

h 1

n Mne M Men n n
Eq.(I-23) Eq.(V-44) Eq.(V-46) Eq.(V-13)

2 .1911 .3859 .0737 .x688

3 .0934 .4229 .0395 .0387

e 4 .659 .4560 .0301 .0301

* *. . * . t *°,

L*Ik. -
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VI. Modes and Frequencies of Cylindrical Tanks with Windrirders

In Section (1)-Section (V) of this report, approximate expressions

for the frequencies and modes of empty and partially filled cylindrical

storage tanks were developed. In obtaining these expressions, the effect

of the wind stiffening ring, i. e. windgirder, which is generally placed

at or near the top of the structure was neglected. The effect of the

windgirder on the frequencies obtained in the previous Sections can be

derived from a procedure using Rayleigh's Method. An upper bound to the

frequency of the tank with a windgirder in terms of the frequency Ws

* of the storage tank without a windgirder is obtained. It will be shown

1hat for the type of tanks under consideration, about 40 feet high-lO0 feet

* .'2 diameter, the effect of the windgirder on the tank frequency is very

small. In general, it may be neglected in computations and the formulas

presented in the previous Sections of this report can thus be used for

the determination of frequencies and modes of free vibrations of struc-

tures with windgirders.(2)

(1) The dimensions and the type of windgirders in the analysis are taken

s from the American Petroleum Institute Specification for Welded Oil 8torage

Tanks, American Petroleum Institute Standard 12C, Fifteenth Edition,

March 1958, American Petroleum Institute, New York, Pg. 13 and 70.

(2) This does not imply that the blast loading on structures with wind-

girders may not differ from the loading without ouch a girder. Information

on blast loading of tanks with windgirders is not yet available.

0-

......................... s;
..................- ,......

. . . .. . . . . . . . . . . . . . . . . . . . . .
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Consider a storage tank with a windgirder attached to the tank at e

height L from the tank bottom, Fig. VI-1. If the frequencies and mode

shapes of an empty or partially full cylindrical tank without a windgirder

are known, an expression for the frequencies of the stiffened tank is

derived as follows. Rayleigh's Principle, T * Va, can be writtenmax max
th

for the n mode of vibration in the form:

T + T aV +V-1na nR ne + nR (Il

where T and V are the maximum values of the kinetic energy and
no ns

potential energy respectively of the empty or partially filled unstiffened

shell and TnR and VnR are the maximum values of the kinetic energy and

potential energy of the windgirder. Defining the quantity T as in

Eq. (V-39), the frequency of a shell with a windgirder is obtained from

the relation:

V + V2 Vns VnR03 . . ( I 2
n-

Tns + Tn

By definition, Tns - n and therefore Vns 2 where Mns and

th th
co are the generalized mass in the n mode and the frequency in the n

mode respectively of a shell without a windgirder. Substituting the above

expressions into Eq. (VI-2), the frequency a) is given by:!n
2 2Vn

W1 + -J2 ns M(nsi n " - (VI-3)

where M is the generalized mass of the windgirder.
nSI

. .S . ' ; : . . '. '. ' .° ' • " " " ' .' ' ' ' ' . . - , ' ' ' . ' ' ' ' . ' ' . % ' ' . ' '

" - . ., .. . . ,, - - . -, -. .- . , . ., *, .. ,,: - " ,'-',, . - - :L - "- ",-. , ' ., -" 2 :f ,, ' " ,:" ,*'. ' _ '-" ' ;J ."' ' . . '. -. ? ' Z " 2 ' , ' ' ' " ' ' ' " ' ' ' L
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Assuming that the shapes of the modes of the tank with the wind-

girder are the same as the shapes of the unstiffened tank, the windgirder

ring must undergo the displacements w(Y, 8) and v(L, 6), of the tank at

the height z -E

v(Lp, 0) - c n  sin nO (vi-4)

where C, the normalization coefficient for the unetiffened tank and the
V Y.

n n W

-. mode shape ratios and - are given in Section (1) or Section (Y).n n

~The potential energy of the ring, VR' in terms of the ring displacements

v andy is:
ERR r,* 2 RR r - 2 e (x6

v a- J (wo+U d + 2-- (ve v)

0 n

which, upon substitution of Eq. (VI-4)-(VI-5) becomes

L~2

The generalized mass of the ring, M fr, is

mode =shap PRi a( v2e+n 2 )SacdO (VI-8)

• • 0

n.-

Th p e

6v a ""i s-
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which, upon substitution of Eq. (VI-4)-(VI-5) beco's:

Mn =p PA 2 ra C2 2 + - I + (vI-9)

Since in all cases, the modes of vibration of the unotiffened shell have

been normalized to Mi = 2valmi, the total mass of the empty tan, the

generalized mass of the shell in all modes "n" is given by:

= 2 iam (VI-lO)

Once the frequency of the unstiffened shell, w p, is known, Eq. (VI-7)-

(VI-lo) can be substituted into Eq. (VI-3) and the value of an can becan

computed.

Table (VI-I) contains the values of the frequencies w and n forn ns

the typical case of an empty steel shell, 100 ft. in diameter and 40 ft

high, having the windGirder section shown in Fig. (VI-2).(3) The windgirder

has been attached to the shell at a height L 3 39 ft. It is seen that the

correction due to the windgirder is very small; this correction is less

than 5 1/2 per cent in all modes. The situation in fluid filled tan.s is

quite similar. Therefore, it is concluded that for the type of storage

tanks under consideration, the effect of the windgirder may be neglected

and the formulas of Section (I)-(V) can be used even for structures with

windgirders.(4)

(3) American Petroleum Institute Specification for Welded Oil Storage Tanks,

Fifteenth Edition, March 1958, Pg. 13 and 70: The minimum required section

modulus for a stiffening ring is Z = 0.0001 DH2 where Z is the section3t2

modulus in in , D is the nominal diameter of the tank in feet and H is
2

the total height of the tank shell in feet. For a tank of 100 feet diameter

and 40 feet height, Z = 40 in3 . The section modulus of the windgirder shown

in Fig. (VI-2) is 47.7 in (See Pg. 70, A.P.I. Specs).

(4) See Footnote 2, Section VI.

I

: .- ". "..-". "- . "• ." ."-"-".%•, -. . .. . . . . . . . . . . . . ".2-.. . .. '-.. ... . ,,". . -". ' . ".". " . . ' % ".%- h"b . '
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Table VI-l

Effect of Winigirder on the Frequency of Cylindrical Tanks

Empty Steel Tank

24
V*.Lu 40 ft., a 50 ft.) L 39 ft., AR 11.2 in, Ir 44~9 in4

to~ (rad/sec) to (rad./sec) % Difference

1 217.4 211.5 2-7%

*2 14o.3 134.2 4.4%

3 94.2 89.4 5.1%

4 66.8 63.4 5.2%

45 49.9 47.9 4.1%
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w= Acosn e
LV BSIN n o

L W V PRESCRIBED

FIG.Zt-I TANK WITH WIND GIRDER

Ilo

0I

416 t SHELL

FIG.Z-2 TYPICAL WIND GIRDER FOR A
100' DIAMETER, 40 HIGH STEEL TANK
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* VII Forccd Vibrtions of F- tv c.nd Partially Full CylAndrical Fuel TLWhk.

The respoisccsof empty and partially (up to 9/10 of the height) full

cylindrical tantks to dynamic loading are analyzed in this Section. For

empty shells, the blast loading consists of a radial pressure dynamically

applied to the shell, while for partially full shells, the vertical pres-

sures of the blast on the surface of the liquid must also be considered.

Information regarding the pressure history is given in the various Armour

Institutel)cports and ypecific methods for the utilization of the pressure

data are developed in the present paper. The cases of a partially full

tanl and an empty tank will be separately treated.

6 Using the modes of free vibrations of the empty or partially full

. tank respectively as generalized coordinates, the response can be expressed

in terms of the infinite number of modes. The required frequencies and

* modes of empty and partially full cylindrical shells were determined in

Sections (I) and (V) of the report respectively. For each integral value

"n" of circumferential waves in the shell displacement, there exists an

infinite number of frequencies Wnj' j i, 2, 3. . . . and corresponding

mode shapes u j(z, 0), Vnj(z, 0) and wj(z, 0). Calling qj(t) the

generalized coordinate corresponding to the mode "nj", the response of the

shell can be written in terms of a summation of the normal modes:

n=O Jal

(1) Blast Effects on Storage Tank Type Structures, Armour Research

Foundation Report Number

.C
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Uo

n=O J=

w~z,0,t), Z O(,)q(t (VII- -3)

n O J=l

When determining the frequency numbers Mni (which are proportional

to unj2) it is found that the values M are smaller-usually very much

smaller, than unity, while the values of M for j > 1 are larger thannj

unity. The modes characterized by j > 1 represent primarily extensional

high frequency oscillations of the shell. For loads of moderately long

duration compared to the fundamental period Tnl for each value of n,

these high frequency modes give only small contributions to the response

of the shell. The major response of the structure can be determined from

the modes characterized by J , 1 and all modes for which j > 1 are there-

fore dropped from the summation.

The special case n = 0 has been discussed in Sections (I-e) and(V-f)

of the report. For the empty shell, an infinite number of frequency numbers

14 are found to lie between closely spaced limits, thus making a modol
Oj

analysis for the case n = 0 impracticable. A suitable alternative method

to obtain the contribution of the n = 0 term is to consider the shell acting

as a series of separate rings, each having a purely radial displacement

w (t). For the fluid filled shell, however, the displacements of the rings

on different levels are coupled by the fluid and a spectrum of gradually

increasing frequencies is again obtained. The fundamental frequency j

*.
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in the filled shell contains ajain the major contribution to the response

for n 0, as in the case where n J 0.

The analysis of the response of the shell in the mode n = 0 will

' be discussed separately in Part ( C ) of the present section.

For the pressure loadings of moderately long duration under con-

sideration, the response of the shell can therefore be written in the form

u(z, 0, t) u n(z, o)q(t) (vII -4)
n=l

" -vot)= Z v (z,()%(t) (VIr-5)

n=l

w(z, 0, t) w(z)%(t) + Z V(z, O)n(t) (vIi-6)

-" n=!

-," -where the functions U, V and Vn are the modes of free vibrations of

. the empty or the partially full shell corresponding to J = 1. Both the

five constant and the three constant approximations of Section I will be

considered in the following analysis. It should be noted that for cases

in which shell strains and stresses are required, the five constant analy-

sis should be used. Expressions will now be developed for the determina-

tion of the generalized coordinates qn(t) from the information given in

. the Armour Report.

4

4Q



a) Plast Pressures on Fuel Tanks - Nuomenclature and Measuring Arrangement

The dynamic load information re:quired to determine the response of

a cylindrical fuel tank under blast loading is obtained from a report on

shock tube experiments by the Armour Research Foundation (See footnote 1,

Section 7). A description of the shock tube tests is given in the Armour

report. The gages were arranged to give enough pressure information to

allow for a meaningful forced vibration analysis of the tank. Two

types of pressures were required; a) the radial pressures on the tank

walls, and b) the vertical pressure on the surface of the fluid filling.

*o In this section, the nomenclature and the arrangement of the pressure

information required for a forced vibration analysis will be described.

For purpose of obtaining vertical pressures on the fluid surface of

the tank, the surface is divided into sixteen sectors by means of eight

diametral planes spaced 22 1/2 degrees apart. Each sector is denoted

as Sk, k = 1-16 and is located by an angle 0 measured to the midpoint

of sector k. The intersection of the bisector of 8 and the periphery of
k

the shell is called i, i = 0-15. The angle 9 is measured positive

clockwise from the zero position which is the point at which the shock

wave first hits the shell. The sector Sk is bounded by the angles 8k and
| ek

k+1

Each sector is further divided radially into three subareas S, where

, the subscripts p a 1, 2, 3 refer to the outermost, middle and interior

subareas of the sector, respectively. Each subarea contains pressure

gages from which a mean vertical pressure P is obtained. The pressure
kp

P is considered constant over the subarea Bk. Fig. (VII-2)
kp k

. • s.

0@.
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and (VII-3) show the divisions of the fluid surface and the nomenclature

used in the following sections of the report.

For purposes of obtaining radial pressures on the walls of the tank,

a-~s wcre placed to measure the average pressure along a generator

denoted by i at the various heights shown in Fig. (VII-l). The outside

wall pressure are thus obtained for a sector Sk in terms of the four

pressures Pil -i4 For the radial pressure on the inner walls of the

shell, the pressure Pi6 is used for a 9/10 full tank and the pressures

P and Pi are used for a half full tank. In each subarea shown in

Fig. (VII-l), the pressure Pih' h = 1-6, is consiaered constant over the

area.

Once the weapon yield and the peak ambient overpressure are selected,

the external pressures acting on the tank can be obtained, and the

forced vibration analysis of the following sections can be made.

I

.'2
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b) n , 0 Five Constant Approximation - Partial Filling 0 4 7 < 1. (See Fig. VII-5)

Substituting the expression Eq. (V-15) to (V-17) for the mode shapes

into Eq. (VII-4)-(VII-6) for the response, the displacement u, v, w of a

point on the shell becomes:

u(Z- 0, t) [ + - Lz cosn qn(t) (VII-7)n... uWz ,t) n  a + n a (2 "
n~l

V n,.' "L v(z,' OP t)= OnWC sinne qt)(I-)

nj-. n=1

I Zz L

w(z, 0, t) %(-)qo(t) + Cn + a 2 cosnG t). (v 19)0..'- 2 a t ) (V

Each mode is normalized to the total mass of the empty tank,-M 2fcaI

and the normalization coefficients Cn, are given by Eq. (V-19).

The generalized coordinates qn(t) satisfy Lagrange's equations

N " + 4 n =  = 2at i (VII-IO)

%n -a 211almi(V10

where wn ' the frequency of vibrations of the tank in the n- mode is

* computed from the lowest root of the frequency determinant Eq. (V-13),

tor Eq. (V-35) if bending effects are small such that the shell 
can be

considered to act as a membranejand %(t) is the generalized force in the

* nth mode.

The generalized force, %(t), may be written as the sum of two terms:

:-'"'-"Q(t = Qnit) + Qn(t) (VII-11)

where Qnl(t) is the generalized force produced by the radial blast

* . *. . . . . . . . . * .- V .' ' \ . - C

~ ~ ~ C
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pressure on the tank walls and q B(t) is the generalized force produced

- by the vertical blast pressures acting on the surface of the tank filling.

". The force Qn.(t) is given by

21 L
:i:" Qnl(t) =o f  P(e. z, t) wn (e. z) adedz "(VII-12)

0 0

Substituting

[Z YLi
w) + (_ _ T cosne (VII-13)

SWn (Z, ) = On  a n (I

into Eq. (VII-12), Qnl(t) may be written in the form

= f f P(e, z, t) n + n T] dz cosnO adO (VII-14)

0 0

Referring to Section (VII-a) in which the pressure measurements made on

the Armour Shock Tube model are described in detail, it is evident that

the spatial integration with respect to z can be performed at each of the

sixteen vertical generators "i" on the shell, i 0 0, 1, 2, . . . 16 as

shown in Figure (VII-i).

Denoting the integral for each i as fni)

L Y
fni f Pi(z t)Cn -Z + ( n" dz (VII-15)

* " 0

and letting P be the pressure at the various heights h of the tank
ih

I (h i, 2, 3, 4, 5, 6) in the segment 8 containing the point i, the func-

tion fni is easily computed in terms of the Pih" For example, for the

case of a 9/10 full tank, y - 0.9, fn(2) becomes

f Ca 2  "105Pl -015P + 075P + o45(P

S+Cna 3t - + + 0.333 (P14 Pi)n Wn P i2 i3 -12 +I-3

Lz "a - '
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7;

Equation ('JII-14) may be written in the form:

qnl(t) = fo fn(0 t) cosnO adO (VII-17)

Where f(0$ t) is a continuous function of the angle 0. The function
n

fn(0, t) is expressed as a Fourier Cosine Series,

fn(O, t)- to(t) a  (vu-z8)

where the coefficients ano and a are determined so that fn(0) t) f

when 0 = 0i (i = 1, 2, ... 16.) This requirement restricts the series to

nine terms and the coefficients a (3) are

a 1n fni (VII-19) 1-

ino

15a Z  (V)' cosnj U fni (n (Icos'It? ) ,.

i=O
j 1, 2, 3,.....7

a n8 "1-- fnigi cosai (VII-21), .

i=0

(2) For the case of a 5/10 full tank, the formula for fni becomes

f ni Cn al F *'Pil - *0 1 5Pi2 + -075Pi0 +.O145(Pj 4 . 1) 0p]

+ Cfa .3 Wn i + Pi2 + Fi3 + 0"333(P1i " Pi6 ) " 1'333Pi J

( 3) The harmonic analysis in which a Fourier Series is passed through

the sixteen points i and where the coefficients an are determined is

given in the Appendix to Section VII.

, ,. .-.. .. ... ,...."..'.. , ,' . . ................. ....... .................- '. ' .. .. .. , .. .......... .. .... .. ,
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S"Substituting Eq. (VIIl-18) into Eq. (VII-17),
' 2 8

[a + an(t)cosJ] cosnO ade (VII-22)
0n~t no

and using the orthogenality relation

2n~f cosje cosnO de = n (VII-23)

0

the generalized force Qnl(t) becomes

* Q(t) = na an(t) . n 1, 2, ... 8 (VII-24)

*i The load information given in the Armour report is sufficient to give

generalized forces in the nine modes, n a 0 to n 8. In general there-

fore, a nine mode elastic analysis may be made for the determination of

the response of the shell; in practice, with loads of moderately long

duration being considered, the series can usually be stopped after the

fourth to sixth mode.

The generalized force %2(t) due to the vertical pressure acting on

the fluid surface at z = yL is given by (4)
21t a

ht() = f P(r, e, t)yn(rO)rdrd (VII-25)
-0 0

where n(r,O) is the space dependent part of n(r, O, t) which is the

displacement of the fluid surface at z = yL. From Eq. (IV-llO)-(IV-1l2):

.. nr, O= n (r O )  a a in( r-) cosn8 (VII-26)

V Iil iul

4 (4) The minus sign is due to the fact that the pressure P(r,0, t) is

considered positive when acting downward, while positive displacements

n(re) are upwards.

I. , . , , . . . . , , , , . . . - " .-'. ' '2 . " ' " " " .' • ., , %% , '% " , - -



-170-

where
%17L

2mr itanh (-a1
S2 2 '__21__ _______

ni M n )jn(M Ln 2 2cL M-i7E
(a. n nT tanh(- sinh(-

tanh( 2a (VII-27)

Substituting Eq. (VII-26) into Eq. (VII-25), Q,2(t) becomes

21 a

* 2(t)= P(r, 0, t) a( cosO rdrdO (VII-28)

Referring again to Fig. (VII-2) and (VII-3) of Section (VII-a), the

fluid surface is divided into circular sectors denoted by k, k = 10 2., 3P...16.

Moreover, each sector k is further subdivided into the subareas S p = 

2, 3, corresponding to the location of the roof pressure measuring gages.

In each subarea

2,. .1 (VII-29)-
p 2,3

the pressure is considered constant and the integration of Eq. (VII-28)

can be performed analytically in each subarea. The expression for the

generalized force Q2(t) becomes therefore

2(t)~~~~ = k n r)n coi n8 r L dO

f T f f h vril

The contribution to Qn2(t) from the vertical pressures acting on the
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subarea Sp in Eq. (VII-30) can be written in the form

Qn2kp Pn a  0 odO n dr (VII-31)
k 

n

where the limits on the integrals are determined by the particular subarea

8 kp. Interchanging the integration with respect to r and the summation

" "over i, and defining the quantities

2- mni r

nip Jn( )rdr (VII-32)

sin no - sin nOk

= n (VII-33)

the generalized force Qnk becomes:

dw

- P kp C - a *nk igIp (VI-34)
kp-i=1

Analytical expressions for the integrals I Eq. (VII-32] are given in

Table (VII-1) for n - 0(1)6.

The generalized force Qn2(t) is given by

16 3
Qn2(t "' 2, (t) (VII-35)% (t)Z Z%

k=1 p~l k

which, upon substitution of Eq. (VII-34) becomes:

P C' i 7L 0iZ 1  (VII-36)
" Qn2 ( t ) ="kp On -a *nk nilnip

k=1 p=l

In practice, a sufficient number of the fluid modes, denoted by the sub-

* script "i" must be considered, commensurate with the required accuracy.

* .. ** . . . . . . . . .
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For the type of study considered, the first three terms of the series of

fluid modes suffice and the upper limit in the summation over i in

Eq. (VII-36) becomes three.

The generalized force Qn(t) can be evaluated from Eq. (VII-11) and

the &-neralized coordinates qn(t) can be computed by a numerical integra-

tion of Eq. (VII-lo). A suitable numerical integration technique, due to

Noumcrov, evaluates qn by a forward step integration in time. Writing

Eq. (VII-lO) and the initial conditions for a system starting from rest,

2 %1 (t) + Qn2(t)'"qa q Fn(t) (VII-37)

%(o0) q n(o) = 0

Let "k" be the interval of the time steps, the recurrence formula for

qn(t+k) becomes

t 2 - k F (t-k) + FoF(t) + F(t,

12 k

] %2(t) q(t-k) (Vz-3)

Equation (VII-38) allows the determination of the gene:alized coordina-

ate qn(t+k) in terms of known values at two previous time steps. The

integration is started, using the formulas

q (0) =o

(5) Numerical Methods in Engineering by M. 0. Salvadori and M. L, Baron,

Prentice Hall, Second Printing, 1955, Pg. 118 ff
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*. %( .) 2 FloF(o) + F(k (VTI-39)

%kkJ = 24 + 2k wo

, . Once the generalized coordinates n(t) have been evaluated, the

response of the shell is obtained from Eq. (VII- 7 ) (VII- 9 ). Using
",." (6)

"" Eq. (I-30)-(I-32), the strains in the shell are given by the expressions

e_- ne + ( C +1 n] -. cosn %(t) (vii-4o)

'60. 0z = Cn + X (--a g a W'
ee,. nl ja W

"_'.O n =1 n( n a
ne o+(2z 3 3 L)Xn cosne %n(t) (VII-1)

F-- n-- in -Oqni +V (VII-42)

a-" W2 Wn a n a 4t

n=l

Using Eq. (Vii-ho)-(VII-42), the membrane shell stresses can be com-

puted from the relations:

a ee se ee + ae7] (VII-43)

a*z =f azz ~j + ae j (vii-44)

a(1 a(VII-45)
;e aT1l-

(6) The strain e in the mode n 0 is given by Eq. (VII- 73 ) in Part (c)

of this section.

. . . . .. . . . . ..""" " " • . ". ". . ." . " . " . -" - w ' W ," .." . .2 . ."

6
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For the cwe of steel nhu1l; wi.Lh concrete shielding, bending stresses

zimy no longer be snall enough to be ignored. Referring to Fig. (VII-h),

the strains E and coo are glven by the relations

Oz =  (r -a) 4-(I-6
az2

.2
c - + (r a)SL (vii_-4,6I

Co ir a r .2 r (VII-47)

Substituting Eq. (VII-7)-(VII-9) into Eq. (VII-16)-(VII-47), expressions

for the strains in terms of the mode shapes and generalized coordinates

can be obtained. The shell stress coo can then be evaluated fron.

Eq. (vii-43).

,-.' -.'....'-- .-.'.'ic . ' ,-.-.' .-. '.'-.-.. '.' .. ,.' '-,- ' '. ',.- -.- ' .,:' " '- '" ' -"" - -,: ":" ' . ": ,,
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. c) n = 0 Partial Filling 0 < Y < 1 (Sce Figure VII-5)

, The major part of the response due to n 0 terms is due to the mode

. with the lowest frequency, 1 1; similar to the situation for n / 0.

icrcfore only the one mode of frequency w, is used. The radial displace-

imont in this mode is

w qo(t) (VII-48)

while u(z, 0, t) - v(z, 0, t) 0. The frequency and the virtual mass of

the fluid in the partially filled tank are given by Eq. (V-48), (V-49),

and(IV-89), respectively:

22 jh (111-49)0, ( 1- 2 )mia2 Y V

2 2 m 2tanh(a

1 2 L0 i a

a

The generalized coordinate qo(t) must satisfy Lagrange's equation:'

" . 2 -°(VII-5~1)

2 0
qo +  W%0qo (I-1

where M, the generalized mas s of the partially full tank in the mode

n =0, is given by

_ L 23 7L 2i

M0ur f ddzMvoJ J addz 21talmi 1+--i L i:" m f f Od"+ mv f dod" I mii
0 0 0 0

(VII-52)

-I
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The generalized force, Qo(t), may be written as the sum of two terms:

Qo(t) =o (t) + o2(t) (VII-53)

where Qol(t) is the generalized force produced by the radial blast pres-

sure on the tank walls and Q.2 (t) is the generalized force produced by

the vertical blast pressures acting on the surface of the tank filling.

The force Qol(t) is given by

2A L

Qol(t) P(e, z, t) ad~dz (VII-54)

Referring to Section (VII-a) and proceeding as in the case for n O p, the

integration of Eq. (VII-54) with respect to z can be performed at each

of the sixteen vertical generators on the shell, i O, l, 2, • . 16

as shown in Figure (VII-l).

Denoting the integral for each i as foil

L

= fo Pi(z, t)dz (VII-55)foi f

and letting Pih be the pressure at the various heights h of the tank

(h = 1, 2, 3,4,5,6) in the segment S containing the point i, the function

f is easily computed in terms of the P For example, for the case of
oi ih

a 9/10 full tank, 7 0.9, fi ecomes

f =.3a [Pi + i2333(Pi4 Pi6

(6) For;the case of a 5/10 full tank, the formula for foi becomes

fo = .3at il + Pi2 + P + "333(Pi4 " - 1.333Pi]5

S- ' .- ' ' ' ' ' ' ' ' ' L-.-.' ''''' .' -.- -.-.-. " .-. " ' ..- " -" ". -",.' . -"-"J.. . ," -'-. ,. . -'
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Equation (VII-51) may be written in the form

21t

M r (t) o(e, t) adO (VII-57)

where f (0, t) is a continuous function of the angle 0 . The function

f (0, t) can be expressed as a Fourier cosine series
8

S f(0, t) aoo(t) + aoj (t)cosJO (VII-58)
~J=l

* . where the coefficients a and a are determined so that f (0, t)= foi

-. when 0 = 0i (i = 1, 2, .... 16). It will be shown however, that only the

first coefficient a o(t) need be computed in order to determine Q 0(t).

SubrUtuting Eq. (VII-58) into Eq. (VII-57) and integratingit is seen that

". only the coefficient a appears and has to be computed. The generalized

force ol (t) is

Q (t) 21aa t) (VII-59)
ol 00

where the coefficient a is obtained for n = 0 from Eq. (VII-19).
00

The generalized force Qo2(t) due to the vertical pressure acting on

- the fluid surface at z = 7L is given by

2n a

(o2t) =- P(r, , t)Jo(r)rdrde (vII-6o)

wherelo(r) is the space dependent part ofL o(r; t), which is the displace-

ment of the fluid surface at z 7L From Eq. (IV-91)-(IV-93):

J~ - + o-+ iVI-1
2"L 2". oi(r)+ a oi(

6ii~ i=l

[1' -1
oi r) a.P.i...... ... II



where

2tanh(L 71)

Poi a. J(C& ('111-62)

Substituting Eq. (VII-61) into Eq. (VII-60), 902 (t) becomes

A2A a CO

Q 't -' P(r,Ot) "L + (Oi rdrdO.(VII-63) C

Referring again to Fig. (VII-2) and (VII-3), the fluid surface is

divided into the subareas Skp as in the case n j 0. In each subarea,

the pressure is considered constant and the integration of Eq. (VII-63)

can be performed analytically in each subarea. The expression for Qo(t)

becomes therefore "

j: 1f ( +VII-64)""

~2±~0 io(.~-)rdrdO

The contribution to o2 (t) from the vertical pressures acting on the

subarea Skp in Eq. (vii-64) can be written in the form

dO 2r L Z ,oiJo(-T) rdr (VII-65)

where the limits of the integration are determined by the particular sub-

area 8 . Interchanging the integration with respect to r and thekp

summation over i, and defining the quantity

' Zoip : Jo (--r) rdr 1VII-66),.

1PoI

"
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the generalized force Qo2kp becomes

%2 ((r 2 rk) 2 ) + 0 ,i] (vn-67)
jul

An analytical expression for Ioip is given in Table (VII-l).

The generalized force o2(t is given by

t-_ 16

2 (vII-68). %2(t) 96%2
k=l p=l

which, upon substitvtion of Eq. (VII-67) becomes

16 3

YL%2(t) (r2 - r X Z i (VnI-69)

k=l p=l iml

* . As in the case n 0, a sufficient number of fluid modes must be considered

commensurate with the required accuracy. For the type of study considered

the first three terms 7f the series of fluid modes suffice and the upper

limit in the summation over i in Eq. (VII-69) becomes two.

The generalized force Qo(t) can be evaluated from Eq. (VII-53) and

the generalized coordinate qo(t) can be computed by a numerical integra-

tion of Eq. (VII-51). Proceeding as in the case where n j 0, and using

the initial conditions for a system starting from rest, the recurrence

formula for %(t+k) becomes

[%(t+k) = k22 2  [F0 (t'k) + 1OF0(t) + o(t~k)

+ -. 10 ] %(t) - %(t-k) (vII-7o)

2+ k a)
0

(7) The constant displacement term is considered as the lowest fluid mode.

* 4 * . . .- - * *44*4* 4 .

",. .*,2. 4 - . . . . . . . . . . . . .
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where

Q 1 (t) + %2 (t) "/I"7l
F°(t) =v° (II-71)

2aLmi 1i + ml ]

and "k" is the interval of the time steps.

The integration is started, using the formulas

%o(o) 0 .".
9'.

%(k) = [1oF(ol + F(k)] (vII-72)

[24 + 2k 2w2]

The generalized coordinate qo(t) gives the response of the shell in

the mode n 0. The corresponding hoop strain, e00 is given by

%(t)
eeG - . (VII-73)

a

and the hoop stress, a., becomes

e E (. e (vII-74)

. ... .. ..... . . .
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d) n 0 0 Three Constant Approximation - Partial Filling

0 < y < 1. (See Fig. VII-5)

Substituting the expression of Eq. (V-3h)-(V-36) for tie mode shpes

into Eq. (VII-4)-(VII-6) for the response, the displacements u, v, v

of a point on the shell become:

e, t) tn z cosn qn(t) (VII-75)n w an=l n

00. = V

v(z, 0, t) C sinne qn9) (VII-76)X, " n W a nt

i[W(z, 8, t) V o(Z)qo(t ) + Cn I cosnO qn(t) (VII-77)

L- n=l

Each mode is again normalized to the total mass of the empty tank, MI

2iiaL mi and the normalization coefficients C are given by Eq. (V-37).i n

The generalized coordinates qn(t) satisfy Lagranges equations,

Eq. (VII-IO), where W is computed from the lowest root of the frequency
n

determinant, Eq. (V-33). The components Qi and Qn2 of the generalized

force %(t) are obtained in the same manner as shown in Section (VII-b).

For the present case, the integral f ni for each point becomes

L

fn P(z t Cn I dz (VII-78)
0

Using Eq. (VII-78), expressions giving fn in terms of the pressures

P are obtained for the cases of 9/10 full and 1/2 full tanks:

",2 fn UCna L"045Pii + *135Pi2 + 0225Pi3 + "095( " Pi6 "

9/10 full (VII-79)

I " " ,. - - " , """"""""""" "" -' . -"" ". . "" "" "" ' - - - " - -" - - -• " -.-- ,,; " ; 3 ; ;,
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fni C2 "o45Pii + "13>Pi2 .j "225Pi3 + .095(Pi 4 - Pi6 ) - 280Pi.

1/2 ful (vII-8o)

Proceeding Exactly as in Section (VII-b), the generalized force component

1d()is obtained from E~q. (vii-24).

'Me generalized force n2 (t) is given by Eq. (VIT-25) where, using

Eq. (IV-61a)-(IV-62),

zCnyL CG ni
(r, e) .yni(r) 6)= -- ni J cos no (VII-81)

i=l i=l ni1

and i is given by Eq. (IV-61b). Proceeding as in Section (VII-b), the

generalized force component Qn2(t) is obtained from Eq. (VII-31). The

numerical integration formulas, Eq. (VII-37)-(VII-39) can then be used to

evaluate the generalized coordinate qn(t)"

Once the coordinates qn(t) have been evaluated, the response of the

shell is obtained from Eq. (VII-7)-(VII-9). Although the three constant

approximation may be used to obtain an estimate of the response of the shell.

it does not give accurate results for the strains and stresses in the shell.

It must be emphasized that when shell strains and stresses are required,

the five constant aproximation must be used.

- - - -
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e) n $ 0 &pty shell - Five Constant and Three Constant Approximations

In Section (VII-b) and (VII-d), methods for the determination of the

*' transient response of partially filled fuel tanks to blast loadings are

developed. The methods presented in these sections are general and can

be applied to the case of empty tanks, provided that the correct normalized
modes and frequencies of empty tanksj Sec. (I-a)and (l-e)[ are used in

the analysis. Moreover, the generalized force component, %2 (t),must be

. 'set equal to zero for the case of an empty tank. With these exceptions,

the procedures of the previous sections can be used in determining the

transient response of empty cylindrical fuel tanks to blasts.

Specific formulas in terms of the wall pressures Pih cannot be given

at this time, since the Armour report (See footnote 1, Section VII)

contains only pressure information for 9/10 full and 1/2 full tanks.

o°-

6%
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f) n 0, Empty Shell. V"

The response of empty shells for the special case n = 0 has been

discussed in Section (I-e) and (VII-a). To obtain the contribution of

the mode n = 0, the empty shell is considered to act as a series of

(7)separate rings7; each ring is subjected to the radial pressure Pih

acting over a circumferential strip of shell equal in depth to the depth

of the vertical subarea "ih" See Fig. (VII-l)1 . The response of

each ring,

Woh %h(t) (VII-82)

satisfiee Lagranges equations

2 Qoh (t)
%h oh oh M(VII-83)oM o -

where oh' the frequency of each ring, is given by

2 Eo E (VII-84)%h 2
pia

and M°  the generalized mass, is given by

M 02vami  (VII-85)

The generalized force on each ring is denoted by Qh(t) and can be

obtained in a manner similar to that of Section (VII-c). Letting Pih(t)

be the radial blast pressure at the various points i on the particular

ring defined by the index h, the generalized force becomes

21(

*oh(t) f ph(e, t)ade (VII-86)

0

(7) Each ring is identified by an index "h", corresponding to a particular

subarea "ih", ee Fig. (VII-j

IS

' C . % . -" " '.."* * -. ' ''.,. . ," . .*"" ,* . . •"."• -*"-• "."," . C-2, %$ ' .,.-.- ' $ -
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*where

Ph(O, t) a (t + a (t)cosj0. (VII-87)
0 oj

J=l

The coefficients aoj. j = 0-6, are determined so that Ph(e, t) = Pig(t)

when e = e (i = 1, 2, .... 16). Substituting Eq. (VII-b7) into

Eq. (VII-86) and integrating, it is seen that only the coefficient

a 00o(t) appears and has to be comput (I. The generalized force oh(t)

is

L2_a a o(t) ( -d)00hoh t 0

- where the coefficient a o(t) is given by

15. 3.

a t M 1P-,(7 (VII-89)
:, .i=O

Proceeding as in Section (VII-c), Eq. (VII-83) can be integrated

using Eq. (VII-70) and (VII-72) where

The response W oh(t) is assumed to act at the center of each ring and the

corresponding hoop strain and hoop stress for each ring can be evaluated

@ -"using Eq. (VII-73)-(VlI-74) respectively.

,,=,
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ADpendix to Section V11 - Determination of the Fourier Series Coefficients a .

The continuous function f (0, t) given by Eq. (VII-18),

n

8
fn(e, t) = ao(t) + Z anJ(t) cosjO (A-i)

j=1 n

is required for the determination of the generalized force component % 1 (t).

The coefficients a are chosen so that fn(e t) f when e e

(i = 1-16). In this section, the expressions for the coefficients anj in

terms of the quantities fn will be developed.

Consider the Fourier Series

fn(O) a + a cosJO (A-2)

J=l

where the coefficients a are given by the expressions2n nJ

f fn(e) osje dO

a (A-3)anj d cos jede -.

0f-I

Let the value of the function fn(e) be known at N equally separatednI
points i, i = 1-16, where each point i is located by the angle ei (i = i,

2, 3. • .N). The coefficients an of the series, Eq. (A-2), are to be

evaluated so that fn(ei) f (e = fni at each point i. Calling the

interval of separation

% 60 2n (A-4)
N

the coefficient of Eq. (A-3) can be written as a ratio of the summation

N
over i,

fn (0i)cosei

ni i i

Si~l (A-5)
anj N

Z cos 2 joi

. .i=l

-"" '.-.'''f - -'t '. :--'..'', -..'? ".' .-.' - * ."- .- ..--- -'*. " *"--" .-" . . .. - - -- -- - . ' ." .'-.' "-.'..'. j ,.'- "
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2 iti
= , N 1-0, 1, 2, . .N-1, for convenience, Eq. (A-5)

becomes: N-I
" " I ni( N N

1i=O

a N (A-6)

cos 2 j i

i=0

*L Using the summation formula

N-i
c,2CL N sinck/2N-1) + sin .(A-7)

2i

S.~ and setting m. -N J, the following results are obtained:

%" N-I

0,J : Cos ji (A-8)

i=O

N-I

j =o cos2ol = N (A-9)

i=O

N-I
N C 2 I N (A-10),::: .,,J 2

i=o

Substituting Eq. (A-8)-(A-I0) into Eq. (A-6), the coefficients a become:-ej

! :2 2iri 2 i (Al

no f 1C-r cosJ i (A-il)

.a = - £ ni(N- NOS2
i=O

N-I

a no N Z fni'- (A-12)

i=O

&" '-"N-1

,.:a, N  i cosgi (A-13)
Z 0 N

* .e A.
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For the particular case where 16, Eqs. (VII-19)-(VII-21) are

obtained. It should be noted that when a harmonic analysis passing a

Fourier Series through N points is made, the series terminates after

the term + 1).

2

.

U
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I. r

Table VII-l Evaluatien ofI~ Jni JJF1) rdr

r 1

rr
2 r a 2ni r

r r

ni

0 ni n=O

2  F 2 0aa

Jr L ia r

n~ 3

rr
m~ r 2 an 1 r a. 2 2a .r

r J . 1 2' )dr ra 8a, 2  -2 2+ 6a.
f, ac~n 2 a' 2 a2 ~~(%!

n 4
-'r r_________

2a. nr 24 m4Ja.r a r a
r J(-ai~ 2 2 r + J
0( 0 a r r

r 2+ 2 _2 a l

nn=5

Ir

m.. .. ... .. ... .. .. ... ., r a*.. ..... r
_1 2***-..
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n =6

r 2480a 2_ ) 144a2  2 2 M

rr

rni 2i r22i

r J6(--) dr a 2L: l+ niia-r

6( a 2 aar a

0 ,in2

a. 
r

ni +]

0 a

n= 7

r -'r a2  F 9216aJ4  1664a2  a. r

J 7 a 2 ni (-)a~rJ-d 1 W~-+ 2

f 68r7 ) dra 2 2 2 EL( +'--- a

+ a. n r  +1iaa.m r

oi33 a

r rn 42

an / 07a n2 a n1 a 0 a rn )

a. r2. +~32 5n) r

S-a J8 dr .- 5 r5  +-m r3  .-nir +  Jl("a--) +

S2 r 4  2 2 2

0( "nir - 8+

3,c

08 L5-

cnr0 a2nln)+ 4 1 Z
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* Q*.n 8 (Cont.)

S107520a5  21120a3  n a  M jl(__ ) +

f a MJ(-Ld 2 m5 rO5~ cL3 r 3  %,r r a~
0' o ni ni ni

( '- ' " 2 2 + 32 nir + 8

2 22 0o()a 8

r2 r r

nin

,- (*) For n =odd integers, the integral is obtained as an infinite series

['.-in J2 n+li a and a number of terms commensurate with the required

accuracy must be taken. Moreover, the integral between limits r1 and r2 is

-." computed from:
. -. J fr~ d f f(r)dr- V (r)dr.

f '"r ) or o
!o
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VIII CONCLUSION (Comment on the Purposes and Results of the Mode Analysis)

The logical first step in the analytical study of a new problem concern-

ing the ability of a structure to withstand static or dynamic loads, is

,* a the formulation of a theory giving the elastic (usually small deflection)

response of the structure. Such a theory will-in general-not be valid up

to the stage where the structure collapses or loses its usefulness otherwise;

instead, the purpose of this simplest theory is to find out which of the

many possible refinements, large deflections, plastic behavior, etc., ought

to be included in an analysis to make it valid up to capacity loads.

21 An obvious example for the situation outlined is the capacity of beams

to carry static loads: the conventional (elastic) theory ceases to be

valid when the yield point is reached somewhere in the cross section. To

- obtain a theory valid up to capacity loads plastic effects must be included.

It is, however) not always a plastic theory which is required, as may be

seen from the example of a slender column. In this well-known case, elastic

,- second order effects must be included to be able to describe the buckling

behavior.

Similarly in the present study of the ability of fuel tanks to resist

air blast, the mode analysis cannot be expected to be valid up to the end

of the usefulness of the structure, because the a-priori unknown lethal

damage, possibly tearing of the plates, buckling, sloshing of fluid, nec-

essarily will be preceded by a phase requiring one or more refinements

beyond an elastic small deflection theory. The mode analysis presented

can however be used--and has been formulated with considerable effort

expressly for the purpose of determining which physical effects will

NZ

0d
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occur requiring a new theory. The sole objective of the mode analysis is

therefore to find the end of its own usefulness, occurng at a certain

time after a blast wave hits the tank, and disclosing which additional

physical effects must be included in a subsequent stage.

The stresses in a typical 100 ft. diameter tank (steel, 9/10 full)

were determined by means of this mode analysis, and are presented as

(1)
sample computation. In addition, less detailed determinations of

stresses were made on full, half full and empty full-scale protected and

unprotected tanks, and on scaled model tanks ranging from 16"-72" in

diameter. These computations indicate in all cases that the mode analy-

sis ceases to be valid after a quite short time, (2) the reason being that

the tank wall on the side facing the wave lifts from the support.

The mode analysis assumes that the shell is cantilevered from the

base and that the shell is prevented from vertical (and horizontal)

motion, an assumption which is initially correct. However, the support

of the shell is such that large downward reactions can be carried, while I-

uplift of the shell is prevented only by the dead weight of the shell

(and possibly by nominal bolts of small total strength). E.g., in a

steel shell of 100 ft. diameter and 40 ft. height, the vertical compressive -

0 2
stress is only 340 lbs./in , such that any vertical tensile stress

2
a > 340 lbs./in , induced by the blast will cause uplift. At load in-

% z

tensities of interest, vertical tensile stresses of such small magnitade

develop very quickly and the validity of the mode analysis ends due to

(1) See Part (III) of the Final Report

(2) Short in comparison to the decay constant of the shockwave.

-- '. . . . . . ~ .. * . * ... * ~gN, a



uplift for a 100 ft. dfiltiater tank aftcr only a few milliseconds 1long before

plasticity or larte deflections effects can develop.

The theoretical conclusions that uplift will develop has since been

verified by tests on mercury filled 16 inch diameter models in the shock

tube, and by tests on water filled, full, half-full and empty models of

10 ft. diameter. The tests have demonstrated (See Fig. VIII-l) clearly,

that large uplift, exceeding 25 per cenL of the height of the model does

occur on models prior to lethal damage. This fact leads to the conjecture

that appreciable uplift may also occur on full scale tanks.

From the instant of time when the mode analysis becomes invalid, a

new type analysis is therefore required; this analysis is complicated

by the fact that a part of the shell,(Fig. VIII-2))over some unknown and

possibly varying angle 2m will not be vertically supported, while the

remainder of the shell, wherever the reactions are downward is still

supported by the base. Analytical treatments for this situation are

developed in Part II of this Report. These treatments are also made in

stages, because the first theory allowing for uplift only requires addi-

tional refinements in order to apply up to lethal damage.

In view of this fact that tentative computations and model tests

indicate that the mode analysis always ceases to be valid long before

lethal damage develops, it appears that the mode analysis need not be re-

peated at all in a study of effects of various blast waves on tanks of

.4 different sizes, (3), but that such a study requires only the application

. of the methods developed in Part II. It is noted that the work on the

4(3) Unless some unconventional type tank is studied.

.

4- 9.

- . . :



mode aeudysi recorded in Part I not only was required to recognize that .0/

*tanks will lift prior to failure, but that a large part of the derivations

are used again in the theories developed in Part II. +

*. +
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Appendix B Bucklinl3 of E2mty Clindrical Tanks

' The problem of the static buckling of an empty cylindrical fuel tank

L subjected to a unform radial pressure producing a uniform compressive

hoop stress and strain is considered in this Appendix.(i) The fuel

tank is of height L and radius a, and is free at the top and simply

supported at the base. The uniform buckling pressure, pB' is obtained

by use of the Rayleigh-Ritz method which leads to a direct solution of

the extremum problem arising from the theorem of Stationary Potential

Energy.(2) This theorem is given by the following relation:

U -V W - stationiry • (B-1)

where the stationary value of the total potential energy U must be a

minimum for stable ecuilibrium. The quantity V represents the strain

energy of the structure and W is the potential energy of the external

Lloads.
The general expression for the strain energy V in terms of the shell

displacements, u(z, 0), v(z, 6) and w(z, 0), is given by Eq. (I-i0)-(I-12)

of the main paper which are repeated here for convenience:

v 1 + v2  (B-2)

(1) This problem was considered because of the possibility that tanks

might buckle due to the hoop stress produced by the blast loads. It was

* '-found subsequently, that in the case of interest, uplift of the tanks

occurs prior to any possibility of buckling so that the analysis reported

here was not utilized.

i ""(2) "Buckling Strength of Metal Structures" by Friedrich Bleich, Edited

by Hans U#. Bleich, McGraw-Hill Book Cgzuany, 1952, New York, Pg 70 ff.



whuru the firt term V is Lhe 1"(,1fbrW1c0 , enrgy:

2-g L

V1  E(~~L h IJ a 2 + (ve V)2 + 2a\)u(v )Vz: (19 , z (+ U(ve

0 0

+ ( (u0 + av)j dzdO (B-3)

and the zOcond tcrm V2 reprczenta the strain energy of bending) and coupling

terns between the membrane and bonding strains:

E h3  21f L+( + + j a u

2 24i(4 2) a3  f f faOV 2 ze e
o) 0

+ a2 a v + ,,o) + 2a2vwz( w + VO)

+ 2a3 u zz dzde , (B-4)

Th, expression for W, the potential energy of the external uniform

pressure p is given by
(3)

(B-5
gsn teivyeng.Rt ehoa prpiaest fcoriae-"'

L 2it 21t
p a

W !B 2O 2 2OB
0 0 0

z L

(B3-5)

Using the Rayleigh.-Ritz method, an appropriate set of coordinate

functions with arbitrary coefficients, which satisfy the boundary condi-

tions on the deflections u, v, and ir of the shell is assumed. Substitut-

ing these expressions into Eq. (B.I)-(B-5), the total potential energy U

is obtained as a function of the arbitrary coefficients. For static

equilibrium, the condition that U be a minimum leads to an ordinary maximum-

minimum problem on the arbitrary constants and hence to a set of homogeneous

(3) "Dynamic Response of Cylindrical Tonks" by F. L. DiMaggio, Armed

Forces Special Weapons Project. Contract DA-29..i"-XZ-54, AFSWP No, 1075,

May 1958, Pg. 21, Eq. (6).



linear algebraic equations on these constants. For non zero solutions,

F the determinant of the set of homoCneous equations must be set equal

to zero, thus leading to an equation on the critical pressure PnB

corresponding to a buckling mode defined by the number "n" of

circumferential waves in the shell displacements. Buckling determinants

* will be developed for both the three constant and the five constant

- approximations considered in Sections (1)-(VIII).

A. -

-J

4 .

4b
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(a) Three Constant Anproximation

Lot the displacements of the shell (Fig. I-1) be given by the

coordinate functions

u(z, 9) = u cos nO (B-6)a

v(z, e) = V I sin nO (B-7)

w(z, o) .w cos nO (B-8)
a

where U, V and W are undetermined constant coefficients. Substituting

into Eq. (B-2)-(B-5), the total strain energy V is given by

V Eh-%) ) U2 + (nV + n)(V2 +  U 2

2 2 3

24( _ 22 a 2 3 U + V2 L.

1w 2__ 2 W34 V B9

2-L j-p -I

WL=#2WU2g.+ n,(-0

2= 3 ...,

The condition of minimum total potential energy e s

W 2 -0- U- n (B-11)

do
N3

where Ci successively takes the values U, V, W leads to the following aet

of three homogeneous linear equations in the unknowns U, V and W:

I;
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U +(-) -- (k) 2n2 'j2  1 ~-" F.C 2.-? 0

(B3-12)

U [% )+M ng + V + -.. .+ 3k(l-T- + [W- -n k 0

2 (B 'I')

(B-13)

2B + VF - 3(1-)k +

+" 2+ 2 + k . + + 2(ln2)g% 0
3 3

(B-14)

- where

Ma Pna= (B-15

-. h

.- and k = l •Non zero solutions of Eq. (B-12)-(B-14) require that the

12a 2

determinant of the system vanishes, thus leading to the determenantal buckl-

ing equation shown on Page 165.

The lowest root MnB of Eq. (B-16) defines the critical buckling pres-

sure pnB in the mode denoted by n. The buckling stress anB can then

be computed from the relation

H a:""" B P nB"a(B-17)

It should be noted that for very thin shells in which is very small,

the constant k can be set equal to zero in Eq. (B-16) as in the vibration

problem of 8ection (I).
I

-I
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Figure (B-i) shows a curve of the buckling load number MnB plotted

against the mode number n for an unprotected steel tank (no concrete

shielding). For the lower modes I < n < 7, the shell acts as a membrane

while for the higher modes n > 18, the bending st'ains predominate and

control the critical buckling loads.

As an example, the following table shows the static hoop stresses

for n = 2, 6, 16 at which a steel tank of 100 ft. diameter, 40 ft. height

and 1/2 inch wall thickness would buckle. The smal].est hoop stress is

required for n 16.

n 2 6 16

a nB(psi) 210,000 17,840 720

Figure (B-2) shows the similar curve for a protected steel tank

(18 inch concrete protection). For protected steel tanks, the buckling

* pressures p are of course very much higher; in addition the minimum

occurs for a much smaller value of n.

2



(b) Five Constant Apjroximation..

Let the displacements of the shell be given by the more general

coordinate functions

2 3Lz
U(ZO) , U 1+ Xa 30 a cos nO (B-18)

a" 2

v(z, 0) V sin nO (B-19)a

w(z, 0)- + w( L cos nO (B-20)

a-.a

where U, V, W, X and Y are undetermined constant coefficients.

Proceeding exactly as in Part (a) of this Appendix, the determenantal

buckling equation shown on Page 168 is obtained.

The lowest root M of Eq. (B-21) defines the critical buckling

pressure p in the mode n.

In sample computations, it was found that the buckling loads are well

approximated by the three-constant approximations and that it is unnecessary

to use the fifth order determinant, Eq. (B-21). This can be seen from

Fig. (B-2).
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(c) Dynwaic Buckling

*- ,The term "dynandc buckling" is only another way of saying that

- the structure will show a transient response. This transient response

can be found again from the appropriate equations of motion using the

modes of free vibration as generalized coordinatee. In the presence of

a hoop stress a which is a substanzlal percentage of the buckling stress
n or which exceeds -10, Eq. (VI-IO) the equation of motion for the

generalized coordinate qn becomes

q4 + w 2 q -n 0- -- (B-22)
nD M i

If 0/n is small, such that it can be neglected, the original equation

of motion, Eq. (Vii-iO) is again obtained. It is noted that Eq. (B-22)

is valid for both positive or negative values of 1 -

,'AB

I

I

Ij.

I
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